PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 4 > pp. 185-209

NONUNIFORMLY SPACED LINEAR ARRAY DESIGN FOR THE SPECIFIED BEAMWIDTH/SIDELOBE LEVEL OR SPECIFIED DIRECTIVITY/SIDELOBE LEVEL WITH COUPLING CONSIDERATION

By H. Oraizi and M. Fallahpour

Full Article PDF (465 KB)

Abstract:
In this paper, we investigate nonuniformly spaced linear arrays (NUSLA) rigorously. Several important problems in NUSLA design are solved with the combination of the Genetic Algorithm and Conjugate Gradient method (GA-CG). The pattern synthesis for the specified beamwidth and minimum achievable sidelobe level (SLL) are performed and for the first time, the graphs which show the relation between the beamwidth, sidelobe level and number of elements for NUSLA are derived. Also, the NUSLA's pattern for the specified directivity and sidelobe level is synthesized. The graphs showing the behavior of NUSLA relative to the increase of its length for a fixed number of elements are derived. These graphs showthe relations between the directivity and sidelobe level of NUSLA with its length. As a practical design, an array of parallel dipoles is designed for specified beamwidth/sidelobe level or specified directivity/sidelobe level. Furthermore, a novel Neural Network based model for the NUSLA is presented for the rapid and accurate computation of Sparameters. The computed S-parameters are used for the computation of coupling among elements. Then the GA-CG method can adjust these values in the synthesis process to achieve desired pattern and bearable coupling among elements.

Citation:
H. Oraizi and M. Fallahpour, "Nonuniformly Spaced Linear Array Design for the Specified Beamwidth/Sidelobe Level or Specified Directivity/Sidelobe Level with Coupling Consideration," Progress In Electromagnetics Research M, Vol. 4, 185-209, 2008.
doi:10.2528/PIERM08072302

References:
1. Unz, H., "Linear arrays with orbitrarily distributed elements," IRE Trans. Antennas Propagat., Vol. 8, 222-223, Mar. 1960.
doi:10.1109/TAP.1960.1144829

2. Skolnik, M. I., J. W. Sherman III, and G. Nemhauser, "Dynamic programming applied to unequally spaced arrays," IEEE Trans. Antennas Propagat., Vol. 12, 35-43, Jan. 1964.
doi:10.1109/TAP.1964.1138163

3. Mailloux, R. J. and E. Cohen, "Statistically thinned arrays with quantized element weights," IEEE Trans. Antennas Propagat., Vol. 39, 436-447, Apr. 1991.
doi:10.1109/8.81455

4. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propagat., Vol. 42, No. 7, 993-999, July 1994.
doi:10.1109/8.299602

5. Donelli, M., S. Caorsi, and F. DeNatale, M. Pastorino, A. Massa, "Linear antenna synthesis with a hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 49, 1-22, 2004.
doi:10.2528/PIER03121301

6. Mahanti, G. K. and N. Pathak P. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304

7. Meijer, C. A., "Simulated annealing in the design of thinned arrays having lowsidelob e levels," Proc. South African Symp. Communication and Signal Processing, 361-366, 1998.

8. Razavi, C. A. and K. Forooraghi, "Thinned arrays using pattern search algorithms," Progress In Electromagnetics Research, Vol. 78, 61-71, 2008.
doi:10.2528/PIER07081501

9. Harrington, R. F., "Sidelobe reduction by nonuniform element spacing," IRE Trans. Antennas Propagat., Vol. 9, 187, Mar. 1961.

10. Andreasan, M. G., "Linear arrays with variable interelement spacings," IEEE Trans. Antennas Propagat., Vol. 10, 137-143, Mar. 1962.

11. Ishimaru, A., "Theory of unequally-spaced arrays," IRE Trans. Antennas Propagat., Vol. 10, 691-702, Nov. 1962.

12. Kumar, B. P. and G. R. Branner, "Design of unequally spaced arrays for performance improvement," IEEE Trans. Antennas Propagat., Vol. 47, No. 3, 511-523, Mar. 1999.
doi:10.1109/8.768787

13. Kumar, B. P. and G. R. Branner, "Generalized analytical technique for the synthesis of unequally spaced arrays with linear, planar, cylendrical or spherical geometry ," IEEE Trans. Antennas Propagat., Vol. 53, No. 2, 621-634, Feb. 2005.
doi:10.1109/TAP.2004.841324

14. Chen, K., Z. He, and C. Han, "A modified real GA for the sparse lineararray synthesis with multiple constraints," IEEE Trans. Antennas Propagat., Vol. 54, No. 7, 2169-2173, July 2006.
doi:10.1109/TAP.2006.877211

15. Zhang, Y. F. and W. Cao, "Array pattern synthesis based on weighted biorthogonal modes," J. of Electromagn. Waves and Appl., Vol. 20, No. 10, 1367-1376, 2006.
doi:10.1163/156939306779276875

16. Lee, K.-C. and J.-Y. Jhang, "Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays ," J. of Electromagn. Waves and Appl., Vol. 20, No. 14, 2001-2012, 2006.
doi:10.1163/156939306779322747

17. Ayestaran, R. G., F. Las-Heras, and J. A. Martınez, "Nonuniform-antenna array synthesis using neural networks," J. of Electromagn. Waves and Appl., Vol. 21, No. 8, 1001-1011, 2007.

18. Kazemi, S. and H. R. Hassani, "Performance improvement in amplitude synthesis of unequally spaced array using least mean square method," Progress In Electromagnetics Research B, Vol. 1, 135-145, 2008.
doi:10.2528/PIERB07103002

19. Stutzman, L. and G. A. Thiele, Antenna Theory and Design, 120-121, John Wiley & Sons, 1998.

20. Bray, M. G., D. H.Werner, D. W. Boeringer, and D. W. Machuga, "Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning ," IEEE Trans. Antennas Propagat., Vol. 50, No. 12, 1732-1742, Dec. 2002.
doi:10.1109/TAP.2002.807947

21. Bray, M. G., D. H.Werner, D. W. Boeringer, and . W. Machuga, "Thinned aperiodic, linear phased array optimizationfor reduced grating lobes during scanning with input impedance bounds," IEEE International Symposium on Antennas and Propagation Digest, Vol. 3, 688-691, Boston, MA, July 2001.

22. Bossard, J. A., D. H. Werner, and M. G. Bray, "Efficient impedance interpolation and pattern approximation for linearmicrostrip phased arrays using neural networks," USNC/URSI National Radio Scicnce Meeting, Vol. 102, Columbus, OH, June 2003.

23. DeLuccia, C. S. and D. H. Werner, "Nature-based design of aperiodic linear arrays with broadband elements using a combination of rapid neural network estimation techniques and genetic algorithms," IEEE Antennas and Propagation Magazine, Vol. 49, No. 5, 13-23, Oct. 2007.
doi:10.1109/MAP.2007.4395292

24. Daniel, J. P., "Mutual coupling between antennas for emission or reception-application to passive and active dipoles ," IEEE Trans. Antennas Propagat., Vol. 22, No. 2, 347-349, 1973.
doi:10.1109/TAP.1974.1140774

25. Taylor, T. T., "Design of line-source antennas for narrow beam width and low side lobes," IRE Trans. Antenna Propagat., Vol. 3, 16-28, 1955.

26. FEKO 5.2, www.feko.info.

27. Zhu, Y.-Z., Y.-J. Xie, Z.-Y. Lei, and T. Dang, "Array a novel method of mutual coupling matching for array antenna design," J. of Electromagn. Waves and Appl., Vol. 21, No. 8, 1013-1024, 2007.

28. Zhou, Q., Y. J. Xie, and Z. Chen, "Prediction of equipment-toequipment coupling through antennas mounted on an aircraft," J. of Electromagn. Waves and Appl., Vol. 21, No. 5, 653-663, 2007.
doi:10.1163/156939307780667300

29. Ayestaran, R. G., F. Las-Heras, and L. F. Herran, "High-accuracy neural-network-based array synthesis including element coupling," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 45-48, 2006.
doi:10.1109/LAWP.2006.870366

30. Mohamed, M. D. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks ," J. of Electromagn. Waves and Appl., Vol. 20, No. 8, 1101-1114, 2006.
doi:10.1163/156939306776930240

31. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of airsuspended trapezoidal and rectangular-shaped microshield lines," J. of Electromagn. Waves and Appl., Vol. 20, No. 9, 1161-1174, 2006.
doi:10.1163/156939306777442917

32. Ayestaran, R. G., J. Laviada, and F. Las-Heras, "Synthesis of passive-dipole arrays with a genetic-neural hybrid method," J. of Electromagn. Waves and Appl., Vol. 20, No. 15, 2123-2135, 2006.
doi:10.1163/156939306779322549

33. He, Q.-Q., "Conformal array based on pattern reconfigurable antenna and its artificial neural model," J. of Electromagn. Waves and Appl., Vol. 22, No. 1, 99-110, 2008.
doi:10.1163/156939308783122751


© Copyright 2010 EMW Publishing. All Rights Reserved