1. Rubinowicz, A., "Thomas Young and the theory of diffraction," Nature, Vol. 180, 162-164, 1957.
doi:10.1038/180160a0 Google Scholar
2. Sommerfeld, A., "Matematische theorie der diffraction," Math. Ann., Vol. 47, 317-374, 1896.
doi:10.1007/BF01447273 Google Scholar
3. Maggi, G. A., "Sulla propagazione libra e perturbata delle onde luminose in un mezzo izotropo," Ann. di Mat. IIa, Vol. 16, 21-48, 1888.
doi:10.1007/BF02420290 Google Scholar
4. Rubinowicz, A., "Die beugungswelle in der Kirchoffschen theorie der beugungsercheinungen," Ann. Physik, Vol. 4, 257-278, 1917.
doi:10.1002/andp.19173581202 Google Scholar
5. Miyamoto, K. and E. Wolf, "Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave --- Part I," J. Opt. Soc. Am., Vol. 52, 615-625, 1962.
doi:10.1364/JOSA.52.000615 Google Scholar
6. Miyamoto, K. and E. Wolf, "Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave --- Part II," J. Opt. Soc. Am., Vol. 52, 626-637, 1962.
doi:10.1364/JOSA.52.000626 Google Scholar
7. Rubinowicz, A., "Simple derivation of the Miyamoto-Wolf formula for the vector potential associated with a solution of the Helmholtz equation," J. Opt. Soc. Am., Vol. 52, 717-718, 1962.
doi:10.1364/JOSA.52.000717 Google Scholar
8. Rubinowicz, A., "The Miyamoto-Wolf diffraction wave," Prog. Opt., Vol. 4, 201-240, 1965. Google Scholar
9. Otis, G. and J. W. Y. Lit, "Edge-on diffraction of a Gaussian laser beam by a semiinfinite plane," App. Optics, Vol. 14, 1156-1160, 1975.
doi:10.1364/AO.14.001156 Google Scholar
10. Ganci, S., "A general scalar solution for the half-plane problem," J. Modern Opt., Vol. 42, 1707-1711, 1995.
doi:10.1080/09500349514551491 Google Scholar
11. Ganci, S., "Half-plane diffraction in a case of oblique incidence," J. Modern Opt., Vol. 43, 2543-2551, 1996. Google Scholar
12. Yalcin, U., "The uniform diffracted fields from an opaque half plane: The theory of the boundary diffraction wave solution," 2. Engineering and Technology Symposium, Ankara, Turkey, April 30-May 1, 2009(accepted and in national language). Google Scholar
13. Umul, Y. Z. and U. Yalcin, "The effect of impedance boundary conditions on the potential function of the boundary diffraction wave theory," Opt. Communications, Vol. 281, 23-27, 2008.
doi:10.1016/j.optcom.2007.09.010 Google Scholar
14. Umul, Y. Z., "Uniform line integral representation of edge diffracted fields," J. Opt. Soc. Am., Vol. 25, 133-137, 2008.
doi:10.1364/JOSAA.25.000133 Google Scholar
15. Tang, L., et al. "Analysis of near-field diffraction pattern of metallic probe tip with the boundary diffraction wave method," Chin. Phys. Lett., Vol. 22, 2443-2446, 2005.
doi:10.1088/0256-307X/22/9/084 Google Scholar
16. Kumar, R., D. P. Chhachhia, and A. K. Aggarwal, "Folding mirror schlieren diffraction interferometer," App. Optics, Vol. 45, 6708-6711, 2006.
doi:10.1364/AO.45.006708 Google Scholar
17. Kumar, R., S. K. Kaura, D. P. Chhachhia, and A. K. Aggarwal, "Direct visualization of Young's boundary diffraction wave," Opt. Communications, Vol. 276, 54-57, 2007.
doi:10.1016/j.optcom.2007.04.009 Google Scholar
18. Yalcin, U., "Uniform scattered fields of the extended theory of boundary diffraction wave for PEC surfaces," Progress In Electromagnetics Research M, Vol. 7, 29-39, 2009.
doi:10.2528/PIERM09031201 Google Scholar
19. Baker, B. B. and E. T. Copson, The Mathematical Theory of Huygens' Principle, Oxford at the Clarendon Press, 1949.
20. Lee, S. W. and G. A. Deschamps, "A uniform asymptotic theory of electromagnetic diffraction by a curved wedge," IEEE Trans. Antennas & Propagat., Vol. 24, 25-34, 1976.
doi:10.1109/TAP.1976.1141283 Google Scholar
21. Lee, S. W., "Comparison of uniform asymptotic theory and Ufimtsev's theory of electromagnetic edge diffraction," IEEE Trans. Antennas & Propagat., Vol. 25, 162-170, 1977.
doi:10.1109/TAP.1977.1141559 Google Scholar
22. Ishimaru, A., "Electromagnetic Wave Propagation, Radiation, and Scattering," Prentice-Hall, Inc., 1991. Google Scholar