Vol. 7

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-06-11

Scattering from Perfectly Magnetic Conducting Surfaces: the Extended Theory of Boundary Diffraction Wave Approach

By Ugur Yalcin
Progress In Electromagnetics Research M, Vol. 7, 123-133, 2009
doi:10.2528/PIERM09042210

Abstract

In this paper, the uniform scattered fields from a perfectly magnetic conducting (PMC) surface are studied with the extended theory of boundary diffraction wave (TBDW). The vector potential is described by considering the extended TBDW for the PMC surfaces. The extended TBDW is then applied to the problem of scattering from the PMC half plane. The total scattered fields are obtained and compared numerically with the exact solution for the same problem. The numerical results show that the solution of the extended TBDW is very close to the exact solution.

Citation


Ugur Yalcin, "Scattering from Perfectly Magnetic Conducting Surfaces: the Extended Theory of Boundary Diffraction Wave Approach," Progress In Electromagnetics Research M, Vol. 7, 123-133, 2009.
doi:10.2528/PIERM09042210
http://www.jpier.org/PIERM/pier.php?paper=09042210

References


    1. Rubinowicz, A., "Thomas Young and the theory of diffraction," Nature, Vol. 180, 162-164, 1957.
    doi:10.1038/180160a0

    2. Sommerfeld, A., "Matematische theorie der diffraction," Math. Ann., Vol. 47, 317-374, 1896.
    doi:10.1007/BF01447273

    3. Maggi, G. A., "Sulla propagazione libra e perturbata delle onde luminose in un mezzo izotropo," Ann. di Mat. IIa, Vol. 16, 21-48, 1888.
    doi:10.1007/BF02420290

    4. Rubinowicz, A., "Die beugungswelle in der Kirchoffschen theorie der beugungsercheinungen," Ann. Physik, Vol. 4, 257-278, 1917.
    doi:10.1002/andp.19173581202

    5. Miyamoto, K. and E. Wolf, "Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave --- Part I," J. Opt. Soc. Am., Vol. 52, 615-625, 1962.
    doi:10.1364/JOSA.52.000615

    6. Miyamoto, K. and E. Wolf, "Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave --- Part II," J. Opt. Soc. Am., Vol. 52, 626-637, 1962.
    doi:10.1364/JOSA.52.000626

    7. Rubinowicz, A., "Simple derivation of the Miyamoto-Wolf formula for the vector potential associated with a solution of the Helmholtz equation," J. Opt. Soc. Am., Vol. 52, 717-718, 1962.
    doi:10.1364/JOSA.52.000717

    8. Rubinowicz, A., "The Miyamoto-Wolf diffraction wave," Prog. Opt., Vol. 4, 201-240, 1965.

    9. Otis, G. and J. W. Y. Lit, "Edge-on diffraction of a Gaussian laser beam by a semiinfinite plane," App. Optics, Vol. 14, 1156-1160, 1975.
    doi:10.1364/AO.14.001156

    10. Ganci, S., "A general scalar solution for the half-plane problem," J. Modern Opt., Vol. 42, 1707-1711, 1995.
    doi:10.1080/09500349514551491

    11. Ganci, S., "Half-plane diffraction in a case of oblique incidence," J. Modern Opt., Vol. 43, 2543-2551, 1996.

    12. Yalcin, U., "The uniform diffracted fields from an opaque half plane: The theory of the boundary diffraction wave solution," 2. Engineering and Technology Symposium, Ankara, Turkey, April 30-May 1, 2009(accepted and in national language).

    13. Umul, Y. Z. and U. Yalcin, "The effect of impedance boundary conditions on the potential function of the boundary diffraction wave theory," Opt. Communications, Vol. 281, 23-27, 2008.
    doi:10.1016/j.optcom.2007.09.010

    14. Umul, Y. Z., "Uniform line integral representation of edge diffracted fields," J. Opt. Soc. Am., Vol. 25, 133-137, 2008.
    doi:10.1364/JOSAA.25.000133

    15. Tang, L. , et al., "Analysis of near-field diffraction pattern of metallic probe tip with the boundary diffraction wave method," Chin. Phys. Lett., Vol. 22, 2443-2446, 2005.
    doi:10.1088/0256-307X/22/9/084

    16. Kumar, R., D. P. Chhachhia, and A. K. Aggarwal, "Folding mirror schlieren diffraction interferometer," App. Optics, Vol. 45, 6708-6711, 2006.
    doi:10.1364/AO.45.006708

    17. Kumar, R., S. K. Kaura, D. P. Chhachhia, and A. K. Aggarwal, "Direct visualization of Young's boundary diffraction wave," Opt. Communications, Vol. 276, 54-57, 2007.
    doi:10.1016/j.optcom.2007.04.009

    18. Yalcin, U., "Uniform scattered fields of the extended theory of boundary diffraction wave for PEC surfaces," Progress In Electromagnetics Research M, Vol. 7, 29-39, 2009.
    doi:10.2528/PIERM09031201

    19. Baker, B. B. and E. T. Copson, The Mathematical Theory of Huygens' Principle, Oxford at the Clarendon Press, 1949.

    20. Lee, S. W. and G. A. Deschamps, "A uniform asymptotic theory of electromagnetic diffraction by a curved wedge," IEEE Trans. Antennas & Propagat., Vol. 24, 25-34, 1976.
    doi:10.1109/TAP.1976.1141283

    21. Lee, S. W., "Comparison of uniform asymptotic theory and Ufimtsev's theory of electromagnetic edge diffraction," IEEE Trans. Antennas & Propagat., Vol. 25, 162-170, 1977.
    doi:10.1109/TAP.1977.1141559

    22. Ishimaru, A., "Electromagnetic Wave Propagation, Radiation, and Scattering," Prentice-Hall, Inc., 1991.