We propose a kind of novel photonic crystal fibers (PCFs) based on a super-lattice structure. Uniform air holes are used to form the basic cell structure. Using the uniform air holes in the PCF has the advantage of minimizing the structural distortion during fabrication while forming a complex-structure cross section. We propose an effective-circular-hole PCF with similar properties of the conventional circular-hole PCF to address the concept of the super-lattice structure PCF. An effective-elliptical-hole PCF based on a super-lattice structure is proposed and investigated, which has the similar birefringent and confinement loss characteristics as the previously reported elliptical-hole PCF. Other PCFs based on super-lattice structures such as the effective-triangular-hole PCF and effective-rectangular-hole PCF can also be achieved by using the design method proposed in this paper.
2. Knight, J. C. and P. S. J. Russell, "Photonic crystal fibers: New way to guide light," Science, Vol. 296, 276-277, 2002.
doi:10.1126/science.1070033
3. Knight, J. C., "Photonic crystal fibers," Nature, Vol. 424, 847-851, 2003.
doi:10.1038/nature01940
4. Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russel, "Highly birefringent photonic crystal fibers," Opt. Lett., Vol. 25, 1325-1327, 2000.
doi:10.1364/OL.25.001325
5. Ferrando, A., E. Silvestre, J. J. Miret, and P. Andres, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett., Vol. 25, 790-792, 2000.
doi:10.1364/OL.25.000790
6. Knight, J. C. and D. V. Skryabin, "Nonlinear waveguide optics and photonic crystal fibers," Opt. Express, Vol. 15, 15365-15376, 2007.
doi:10.1364/OE.15.015365
7. Fevrier, S., P. Viale, F, Gerome, P. Leproux, P. Roy, J.-M. Blondy, B. Dussardier, and G. Monnom, "Very large effective area singlemode photonic bandgap fibre," Eletron. Lett., Vol. 39, 1240-1242, 2003.
doi:10.1049/el:20030841
8. Dobb, H., K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Eletron. Lett., Vol. 40, 657-658, 2004.
doi:10.1049/el:20040433
9. Dong, X. and H. Y. Tam, "Temperature-insensitive strain sensor Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer," Appl. Phys. Lett., Vol. 90, 151113, 2007.
doi:10.1063/1.2722058
10. Wadsworth, W. J., J. C. Knight, W. H. Reewes, P. S. J. Russell, and J. Arriaga, "Yb3+-doped photonic crystal fibre laser," Eletron. Lett., Vol. 36, 1452-1253, 2000.
doi:10.1049/el:20000942
11. Liu, X., X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, "Swithable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg grating and photonic crystal fiber," IEEE Photon. Technol. Lett., Vol. 17, 1626-1628, 2005.
doi:10.1109/LPT.2005.851024
12. Chen, D., "Stable multi-wavelength erbium-doped fiber laser based on photonic crystal fiber Sagnac loop filter," Laser Phys. Lett., Vol. 4, 437-439, 2007.
doi:10.1002/lapl.200710003
13. Broderick, N. G. R., T. M. Monro, P. J. Bennett, and D. J. Richardson, "Nonlinearity in holey optical fibers: Measurement and future opportunities," Opt. Lett., Vol. 24, 1395-1397, 1999.
doi:10.1364/OL.24.001395
14. Dudley, J. M. and J. R. Taylor, "Ten years of nonlinear optics in photonic crystal fibre," Nature Photonics, Vol. 3, 85-90, 2009.
doi:10.1038/nphoton.2008.285
15. Saitoh, K. and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett., Vol. 15, 1384-1386, 2003.
doi:10.1109/LPT.2003.818215
16. Ju, J., W. Jin, and M. S. Demokan, "Design of single-polarization single-mode photonic crystal fiber at 1.30 μm and 1.55μm," J. Lightw. Technol., Vol. 24, 825-830, 2006.
doi:10.1109/JLT.2005.861942
17. Chen, D. and L. Shen, "Highly birefringent elliptical-hole photonic crystal fibers with double defect," J. Lightw. Technol., Vol. 25, 2700-2705, 2007.
doi:10.1109/JLT.2007.902114
18. Hu, D. J. J., P. Shum, C. Lu, X. Yu, G. Wang, and G. Ren, "Holey ¯ber design for single-polarization single-mode guidance," Appl. Opt., Vol. 48, 4038-4043, 2009.
doi:10.1364/AO.48.004038
19. Saitoh, K., M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express,, Vol. 11, 843-852, 2003.
doi:10.1364/OE.11.000843
20. Poletti, F., V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express, Vol. 13, 3728-3736, 2005.
doi:10.1364/OPEX.13.003728
21. Steel, M. J. and R. M. Osgood, "Elliptical-hole photonic crystal fibers," Opt. Lett., Vol. 26, 229-231, 2001.
doi:10.1364/OL.26.000229
22. Chen, D. and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett., Vol. 19, 185-187, 2007.
doi:10.1109/LPT.2006.890040
23. Suzuki, K., H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, "Optical properties of a low-loss polarization-maintaining photonic crystal fiber," Opt. Express, Vol. 9, 676-680, 2001.
doi:10.1364/OE.9.000676
24. Wu, J.-J., D. Chen, K.-L. Liao, T.-J. Yang, and W. L. Ouyang, "The optical properties of Bragg fiber with a fiber core of 2-dimension elliptical-hole photonic crystal structure," Progress In Electromagnetics Research Letters, Vol. 10, 87-95, 2009.
doi:10.2528/PIERL09061804
25. Wang, Z., G. Ren, S. Lou, and S. Jian, "Supercell lattice method for photonic crystal fibers," Opt. Express, Vol. 11, 980-991, 2003.
doi:10.1364/OE.11.000980
26. Saitoh, K. and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron., Vol. 38, 927-933, 2002.
doi:10.1109/JQE.2002.1017609
27. Yang, R., W. Xue, T. Huang, and G. Zhou, "Research on the e®ects of air hole shape on the properties of microstructured optical fibers," Optical Engineering, Vol. 43, 2701-2706, 2004.
doi:10.1117/1.1795260