Vol. 12
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-04-08
A Cell-Vertex Finite Volume Time Domain Method for Electromagnetic Scattering
By
Progress In Electromagnetics Research M, Vol. 12, 1-15, 2010
Abstract
A cell-vertex based finite volume scheme is used to solve the time-dependentMaxwell's equations and predict electromagnetic scattering from perfectly conducting bodies. The scheme is based on the cell-vertex finite volume integration method, originally proposed by Ni[1], for solution of the two dimensional unsteady Euler equations of gas dynamics. The resulting solution is second-order accurate in space and time, and requires cell based fluctuations to be appropriately distributed to the state vector stored at cell vertices at each time step. Results are presented for two-dimensional canonical shapes and complex three dimensional geometries. Unlike in gas dynamics, no user defined numerical damping is required in this novel cell-vertex based finite volume integration scheme when applied to the time-domain Maxwell's equations.
Citation
Narendra Deore, and Avijit Chatterjee, "A Cell-Vertex Finite Volume Time Domain Method for Electromagnetic Scattering," Progress In Electromagnetics Research M, Vol. 12, 1-15, 2010.
doi:10.2528/PIERM10022003
References

1. Ni, R.-H., "A multiple-grid scheme for solving the Euler equations," AIAA Journal, Vol. 20, 1565-1571, 1982.
doi:10.2514/3.51220

2. Shankar, V., "A gigaflop performance algorithm for solving Maxwell's equations of electromagnetics," AIAA Paper, 91-1578, Jun. 1998.

3. Yee, K., "Numerical solutions of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

4. Shang, J. S., "Shared knowledge in computational fluid dynamics, electromagnetics, and magneto-aerodynamics," Progress in Aerospace Sciences, Vol. 38, No. 6, 449-467, 2002.
doi:10.1016/S0376-0421(02)00028-3

5. Roe, P. L., "Fluctuations and signals --- A framework for numerical evolution problems," Numerical Methods in Fluid Dynamics, K. W. Morton and M. J. Baines (eds.), Academic Press, 219-257, 1982.

6. Hall, M. G., "Cell-vertex multigrid schemes for solution of the Euler equations," Numerical Methods for Fluid Dynamics II, K. W. Morton and M. J. Baines (eds.), 303{345, Clarendon Press, Oxford, 1985.

7. Zhu, Y. and J. J. Chattot, "Computation of the scattering of TM plane waves from a perfectly conducting square --- Comparisons of Yee's algorithm, Lax-Wendroff method and Ni's scheme," Antennas and Propagation Society International Symposium, Vol. 1, 338-341, 1992.

8. Chatterjee, A. and A. Shrimal, "Essentially nonoscillatory finite volume scheme for electromagnetic scattering by thin dielectric coatings," AIAA Journal, Vol. 42, No. 2, 361-365, 2004.
doi:10.2514/1.553

9. Chatterjee, A. and R. S. Myong, "Efficient implementation of higher-order finite volume time-domain method for electrically large scatterers," Progress In Electromagnetics Research B, Vol. 17, 233-254, 2009.
doi:10.2528/PIERB09073102

10. Koeck, C., "Computation of three-dimensional flow using the Euler equations and a multiple-grid scheme," International Journal for Numerical Methods in Fluids, Vol. 5, 483-500, 1985.
doi:10.1002/fld.1650050507

11. Shankar, V., W. F. Hall, and A. H. Mohammadin, "A time-domain differential solver for electromagnetic scattering problems," Proceedings of the IEEE, Vol. 77, No. 5, 709-721, 1989.
doi:10.1109/5.32061

12. Ni, R. H. and J. C. Bogoian, "Prediction of 3-D multistage turbine flow field using a multiple-grid euler solver," AIAA Paper, 1-9, 890203, Jan. 1989.

13. French, A. D., "Solution of the Euler equations on cartesian grids," Applied Numerical Mathematics, Vol. 49, 367-379, 2004.
doi:10.1016/j.apnum.2003.12.014

14. Woo, A. C., H. T. G. Wang, M. J. Schuh, and M. L. Sanders, "Benchmark radar targets for the validation of computational electromagnetics programs," IEEE Antennas and Propagation Society Magazine, Vol. 35, No. 1, 84-89, 1993.
doi:10.1109/74.210840

15. Chatterjee, A. and S. P. Koruthu, "Characteristic based FVTD scheme for predicting electromagnetic scattering from aerospace configurations ," Journal of the Aeronautical Society of India, Vol. 52, No. 3, 195-205, 2000.

16. Leveque, R. J., Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, UK, 2002.

17. Rossmanith, J. A., "A wave propagation method for hyperbolic systems on the sphere," Journal of Computational Physics, Vol. 213, 629-658, 2006.
doi:10.1016/j.jcp.2005.08.027

18. Chakrabartty, S. K., K. Dhanalakshmi, and J. S. Mathur, "Computation of three dimensional transonic flow using a cell vertex finite volume method for the Euler equations," Acta Mechanica, Vol. 115, 161-177, 1996.
doi:10.1007/BF01187436