Vol. 17

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Optical Absorption Enhancement in Solar Cells via 3D Photonic Crystal Structures

By Jiun-Yeu Chen, Eric Li, and Lien-Wen Chen
Progress In Electromagnetics Research M, Vol. 17, 1-11, 2011


Light concentrating structures with three-dimensional photonic crystals (3D PhCs) for solar cell applications are investigated via simulation. The 3D opal PhCs are suggested as an intermediate layer in the concentrator system for solar cells. It is found that the light absorption is significantly enhanced due to the adding of diffractive effects of PhCs to the concentrator. Three types of PhCs are considered in four scenarios to verify the absorption enhancement by such a light concentrating structure. Our calculations show that the face-centered cubic PhC can create an absorbing efficiency superior to the others under a specified lattice orientation pointing to the sun, which results in an enhancement factor of 1.56 in absorption for the 500--1100 nm spectral range.


Jiun-Yeu Chen, Eric Li, and Lien-Wen Chen, "Optical Absorption Enhancement in Solar Cells via 3D Photonic Crystal Structures," Progress In Electromagnetics Research M, Vol. 17, 1-11, 2011.


    1. Poortmans, J. and V. Arkhipov, Thin Film Solar Cells Fabrication, Characterization and Applications, Wiley, Chichester, 2006.

    2. Luque, A. and S. Hegedus, Handbook of Photovoltaic Science and Engineering, Wiley, Chichester, 2003.

    3. Brendel, R., "Thin-film Crystalline Silicon Solar Cells," Wiley-VCH, Weinheim, 2003.

    4. Peters, M., J. C. Goldschmidt, P. Loper, B. Groβ, J. Upping, F. Dimroth, R. B. Wehrspohn, and B. Blasi, "Spectrally-selective photonic structures for PV applications," Energies, Vol. 3, 171-193, 2010.

    5. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Mat., Vol. 9, 205-213, 2010.

    6. Kroll, M., S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, "Employing dielectric diffractive structures in solar cells --- a numerical study," Phys. Stat. Sol. (a), Vol. 205, 2777-2795, 2008.

    7. Goldschmidt, J. C., M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, "Increasing the efficiency of fluorescent concentrator systems," Solar Energy Mater. & Solar Cells, Vol. 93, 176-182, 2009.

    8. Zeng , L. , P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, "Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector," Appl. Phys. Lett., Vol. 93, 221105, 2008.

    9. Bielawny, A., J. Upping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, and M. Knez, "3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell," Phys. Stat. Sol. (a), Vol. 205, 2796-2810, 2008.

    10. Mallick, S. B., M. Agrawal, and P. Peumans, "Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells," Opt. Express, Vol. 18, 5691-5706, 2010.

    11. Archuleta-Garcia, R. , D. Moctezuma-Enriquez, and J. Manzanares-Martinez, "Enlargement of photonic band gap in porous silicon dielectric mirrors," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 351-361, 2010.

    12. Li, H. and X. Yang, "Large absolute band gaps in two-dimensional photonic crystals fabricated by a three-order-effect method," Progress In Electromagnetics Research, Vol. 108, 385-400, 2010.

    13. Florescu , M. , H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, "Improving solar cell efficiency using photonic band-gap materials," Solar Energy Mater. & Solar Cells, Vol. 91, 1599-1610, 2007.

    14. Zhou, D. and R. Biswas, "Photonic crystal enhanced light-trapping in thin film solar cells," J. Appl. Phys., Vol. 103, 093102, 2008.

    15. Chutinan, A. and and S. John, "Light trapping and absorption optimization in certain thin-film photonic crystal architectures," Phys. Rev. A, Vol. 78, 023825, 2008.

    16. Chutinan, A., N. P. Kherani, and S. Zukotynski, "High-efficiency photonic crystal solar cell architecture," Opt. Express, Vol. 17, 8871-8878, 2009.

    17. Duche, D. , L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, "Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells," Appl. Phys. Lett., Vol. 92, 193310, 2008.

    18. Joannopoulos, J. D. , S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton University Press, Princeton, 2008.

    19. Bielawny, A. , C. Rockstuhl, F. Lederer, and R. B. Wehrspohn, "Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells," Opt. Express, Vol. 17, 8439-8466, 2009.

    20. Lourtioz, J.-M. , H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, and A. Tchelnokov, "Photonic Crystals: Towards Nanoscale Photonic Devices," Springer, Berlin, 2005.

    21. Palik , E. D., Handbook of Optical Constants of Solids, Academic Press, Orlando, 1997.

    22. Air Mass 1.5 Spectra, American Society for Testing and Materials, , http://rredc.nrel.gov/solar/spectra/am1.5/.

    23. Mutitu, J. G. , S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, "Thin film silicon solar cell design based on photonic crystal and diffractive grating structures," Opt. Express, Vol. 16, 15238-15248, 2008.