Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 22 > pp. 91-107


By C. Garcia-Pardo, J.-M. Molina-García-Pardo, M. Lienard, D. P. Gaillot, and P. Degauque

Full Article PDF (2,292 KB)

The objective of this paper is to study the wideband characteristics of the radio channel in a tunnel environment, not only the delay spread, but also the angle of departure/arrival of the rays, their relative weights and their delays, which are important values for Multiple-Input Multiple-Output applications. In order to achieve this goal, a measurement campaign has been carried out in a straight arched tunnel over a frequency band extending from 2.8 to 5.0 GHz and distance varying from 50 m up to 500 m. First, the variations of the channel impulse response and of the delay spread versus the distance between the transmitter and the receiver are analyzed. Then, the bidirectional channel characteristics have been extracted from the measured channel matrices using a high resolution estimation algorithm. The main contribution of this paper is to clearly show the quantitative variation of the delay spread and the angle of departure/arrival of the rays along a real tunnel and to investigate the possibility of using the ray theory in a rectangular tunnel to interpret experimental results obtained in an arched tunnel.

C. Garcia-Pardo, J.-M. Molina-García-Pardo, M. Lienard, D. P. Gaillot, and P. Degauque, "Double Directional Channel Measurements in an Arched Tunnel and Interpretation Using Ray Tracing in a Rectangular Tunnel," Progress In Electromagnetics Research M, Vol. 22, 91-107, 2012.

1. Zhang, Y. P., G. X. Zheng, and J. H. Sheng, "Radio propagation at 900MHz in underground coal mines," IEEE Trans. Antennas Propag., Vol. 49, No. 5, 757-762, May 2001.

2. Lienard, M. and P. Degauque, "Natural wave propagation in mine environments," IEEE Trans. Antennas Propag., Vol. 48, No. 9, 1326-1339, Sep. 2000.

3. Boutin, M., A. Benzakour, C. L. Despins, and S. Affes, "Radio wave characterization and modeling in underground mine tunnels," IEEE Trans. Antennas Propag., Vol. 56, No. 2, 540-549, Feb. 2008.

4. Zhi, , S. and I. F. Akyildiz, "Channel modeling and analysis for wireless networks in underground mines and road tunnels," IEEE Trans. on Commun., Vol. 58, No. 6, 1758-1768, Jun. 2010.

5. Lienard, , M. and and P. Degauque, "Propagation in wide tunnels at 2 GHz: A statistical analysis," IEEE Trans. on Vehicular Techno., Vol. 47, No. 4, 1322-1328, Nov. 1998.

6. Zhang, Y. P. and Y. Hwang, "Characterization of UHF radio propagation channels in tunnel environments for microcellular and personal communications," IEEE Trans. on Vehicular Techno., Vol. 47, No. 1, 283-296, Feb. 1998.

7. Molina-Garcia-Pardo, J.-M. , M. Lienard, and P. Degauque, "Propagation in tunnels: Experimental investigations and channel modeling in a wide frequency band for MIMO applications," EURASIP J. on Wireless Communications and Networking, Article ID 560571, 9 pages, 2009, doi:10.1155/2009/560571.

8. Valdesuerio, J. A. , B. Izquierdo, and J. Romeu, "On 2 X 2 MIMO observable capacity in subway tunnels at X-Band: An experimental approach," IEEE Antennas and Propag. Letters, Vol. 9, 1099-1102, 2010.

9. Molina-Garcia-Pardo , J. M., M. Lienard, P. Degauque, E. Simon, and L. Juan Llacer, "On MIMO channel capacity in tunnels," IEEE Trans. on Antennas and Propag., Vol. 57, 1-10, Dec. 2009.

10. Didascalou, D. , T. M. SchÄafer, F. Weinmann, and W. Wiesbeck, "Ray density normalization for ray-optical wave propagation modeling in arbitrarily shaped tunnels," IEEE Trans. Antennas Propag., Vol. 48, No. 9, 1316-1325, Sep. 2000.

11. Popov, A. V. and N. Y. Zhu, "Modeling radio wave propagation in tunnels with a vectorial parabolic equation," IEEE Trans. Antennas Propag., Vol. 48, No. 9, 1403-1412.

12. Wang, T.-S. and C.-F. Yang, "Simulations and measurements of wave propagations in curved road tunnels for signals from GSM base stations," IEEE Trans. Antennas Propag., Vol. 54, No. 9, 2577-2584, Sep. 2006.

13. Araujo, M. G., F. Obelleiro, and J. L. Rodriguez, "Modeling high frequency propagation in tunnel environments by iterative physical optics methods," Wireless Pers. Comm., Vol. 20, No. 3, 237-250, Mar. 2002.

14. Ndoh, M., G. Y. Delisle, and R. Le, "A novel approach to propagation prediction in confined and diffracting rough surfaces," nt. J. Num. Modeling: Electron. Networks, Devices and Fields, Vol. 16, No. 6, 535-555, Dec. 2003.

15. Mahmoud, S. F., "Wireless transmission in tunnels with non-circular cross section," IEEE Trans. Antennas and Propag, Vol. 58, No. 2, 613-616, 2010.

16. Hadi, M. F. and S. F. Mahmoud, "Modelling wireless propagation in a rectangular tunnel with the compact-FDTD method," IEEE Radio and Wireless Symp., Jan. 22-24, 2008.

17. Emslie, A. G., R. L. Lagace, and P. F. Strong, "Theory of the propagation of UHF radio waves in coal mine tunnels," IEEE Trans. Antennas Propag., Vol. 23, 192-205, 1975.

18. Mahmoud, S. F. and J. R.Wait, "Geometrical optical approach for electromagnetic wave propagation in rectangular mine tunnels," Radio Sci., Vol. 9, 1147-1158, 1974.

19. Holloway, C. L., D. A. Hill, R. A. Dalke, and G. A. Hufford, "Radio wave propagation characteristics in lossy circular waveguides such as tunnels, mine shafts and boreholes," IEEE Trans. Antennas Propag.,, Vol. 48, 1354-1366, Sept. 2000.

20. Dudley, D. G. and S. F. Mahmoud, "Linear source in a circular tunnel," IEEE Trans. Antennas Propag., Vol. 54, No. 7, 2034-2047, Jul. 2006.

21. Mahmoud, S. F., "Modal propagation of high frequency EM waves in straight and curved tunnels within the earth," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 12, 1611-1627, 2005.

22. Molina-Garcia-Pardo, J. M., M. Lienard, A. Nasr, and P. Degauque, "On the possibility of interpreting field variations and polarization in arched tunnels using a model for propagation in rectangular or circular tunnels," IEEE Trans. Antennas Propag., Vol. 56, No. 4, 1206-1211, Apr. 2008.

23. Didascalou, D. , J. Maurer, and W. Wiesbeck, "Subway tunnel guided electromagnetic wave propagation at mobile communications frequencies," IEEE Trans. Antennas Propag., Vol. 49, No. 11, 1590-1596, 2001.

24. Rappaport, T. S., Wireless Communications, Principles and Practice, Prentice Hall Ed., 1999.

25. Richter, A. and R. Thoma, "Joint maximum likelihood estimation Joint maximum likelihood estimation of specular paths and distributed diffuse scattering," Proc. of the IEEE Int. Conf. on Vehicular Techno., Vol. 1, 11-15, May 30-Jun. 1, 2005.

26. Richter, A., "Estimation of radio channel parameters: Models and algorithms,", Ph.D. Dissertation, Technische Univ. Ilmenau,Ilmenau, Germany, 2005.

27. Molisch, A. F., Wireless Communications, IEEE Press and Wiley Ltd., 2005.

28. Eggers, P., "Angular propagation descriptions relevant for base station adaptive antenna operations ," Kluwer Wireless Personal Commun., Vol. 11, 3-29, 1999.

© Copyright 2010 EMW Publishing. All Rights Reserved