PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 26 > pp. 39-53

INFLUENCE OF THE PLASMA COLUMN CROSS-SECTION NON-CIRCULARITY ON THE EXCITATION OF THE AZIMUTHAL SURFACE WAVES IN ELECTRON CYCLOTRON FREQUENCY RANGE BY ANNULAR ELECTRON BEAM

By I. O. Girka, V. O. Girka, and I. V. Pavlenko

Full Article PDF (226 KB)

Abstract:
The initial stage of interaction between an annular beam of electrons, which rotate along Larmor orbits in the gap between a localized plasma column and a metal waveguide with a circular cross-section of its walls, and the electromagnetic waves of the surface type, is studied theoretically. These waves are extraordinary polarized; they propagate along the azimuthal angle across an axial external steady magnetic field in the electron cyclotron frequency range. The numerical analysis shows that changing the shape of the plasma filling cross section leads to corrections to the eigen frequency of the surface waves but does not cause a disruption of the resonance beam-wave instability development. Moreover, the conditions are found when appropriate choice of the shape can lead to increasing the instability growth rate by dozens of percent.

Citation:
I. O. Girka, V. O. Girka, and I. V. Pavlenko, "Influence of the Plasma Column Cross-Section Non-Circularity on the Excitation of the Azimuthal Surface Waves in Electron Cyclotron Frequency Range by Annular Electron Beam," Progress In Electromagnetics Research M, Vol. 26, 39-53, 2012.
doi:10.2528/PIERM12080308

References:
1. Kainer, S., et al., "Nonlinear wave interactions and evolution of a ring-beam distribution of energetic electrons," Phys. Fluids, Vol. 31, No. 8, 2238-2248, 1988.
doi:10.1063/1.867003

2. Saito, H. and J. S. Wurtele, "The linear theory of the circular free-electron laser," Phys. Fluids, Vol. 30, No. 7, 2209-2220, 1987.
doi:10.1063/1.866155

3. Wu, J., C. Xiong, and S. Liu, "Excitation of microwave by an annular electron beam in a plasma-filled dielectric lined waveguide," International Journal of Infrared and Millimeter Waves, Vol. 16, No. 9, 1573-1581, 1995.
doi:10.1007/BF02274817

4. Norreys, P. A., et al., "Observation of annular electron beam transport in multi-TeraWatt laser-solid interactions," Plasma Physics and Controlled Fusion, Vol. 48, No. 2, L11-L22, 2006.
doi:10.1088/0741-3335/48/2/L01

5. Humphries, S., Charged Particle Beams, John Wiley and Sons Inc., New York, 1990.

6. Yatsui, K., "Industrial applications of pulse power and particle beams," Laser and Particle Beams, Vol. 7, No. 4, 733-741, 1989.
doi:10.1017/S0263034600006200

7. Miller, R. B., An Introduction to the Physics of Intense Charged Particle Beams, Plenum Press, New York, 1982.
doi:10.1007/978-1-4684-1128-7

8. Manheimer, W. M., R. F. Fernsler, and M. S. Gitlin, "High power, fast, microwave components based on beam generated plasmas," IEEE Transactions on Plasma Science, Vol. 26, No. 5, 1543-1555, 1998.
doi:10.1109/27.736059

9. Murphy, D. P., R. F. Fernsler, R. E. Pechacek, and R. A. Meger, "Microwave emission from plasmas produced by magnetically confined electron beams," IEEE Transactions on Plasma Science, Vol. 30, No. 1, 436-441, 2002.
doi:10.1109/TPS.2002.1003893

10. Borg, G. G., J. H. Harris, D. G. Miljak, and N. M. Martin, "Application of plasma columns to radio-frequency antennas ," Applied Physics Letters, Vol. 74, No. 22, 3272-3274, 1999.
doi:10.1063/1.123317

11. Cerri, G., R. De Leo, V. Mariani Primiani, and P. Russo, "Measurement of the properties of a plasma column used as a radiated element," IEEE Transactions on Instrumentation and Measurement, Vol. 57, 242-247, 2008.
doi:10.1109/TIM.2007.909503

12. Rayner, J. P., A. P. Whichello, and A. D. Cheetham, "Physical characteristics of plasma antennas," IEEE Transactions on Plasma Science, Vol. 32, No. 1, 269-281, 2004.
doi:10.1109/TPS.2004.826019

13. Wu, M., B. Y.Wen, H. Zhou, and , "Ionospheric clutter suppression in HF surface wave radar," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1265-1272, 2009.
doi:10.1163/156939309789108570

14. Girka, V. O., I. O. Girka, A. V. Girka, and I. V. Pavlenko, "Theory of azimuthal surface waves propagating in non-uniform waveguides," Journal of Plasma Physics, Vol. 77, Part 4, 493-519, 2011.

15. Girka, V. O., I. O. Girka, Y. I. Morgal, and I. V. Pavlenko, "Excitation of azimuthal surface modes by annular electron beams in the range of electron cyclotron frequency," Physica Scripta, Vol. 84, 025505, 2011.
doi:10.1088/0031-8949/84/02/025505

16. Wu, J.-J., T.-J. Yang, and L. Shen, "Subwavelength microwave guiding by a periodical corrugated metal wire," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 11-19, 2009.
doi:10.1163/156939309787604616

17. Zhang, X., L. Shen, J.-J. Wu, and T.-J. Yang, "Terahertz surface plasmon polaritons on a periodically structured metal film with high confinement and low loss," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2451-2460, 2009.

18. Girka, O. I., V. O. Girka, I. O. Girka, and I. V. Pavlenko, "Effect of the shape of the cross section of a plasma-dielectric interface on the dispersion properties of azimuthal surface modes," Plasma Physics Reports, Vol. 23, No. 2, 91-101, 2007.
doi:10.1134/S1063780X0702002X

19. Girka, O. I. , V. O. Girka, I. O. Girka, and I. V. Pavlenko, "Resonant e®ect of the noncircular shape of the plasma surface on the dispersion properties of extraordinary azimuthal surface modes in magnetoactive waveguides," Plasma Physics Reports, Vol. 23, No. 7, 543-552, 2007.
doi:10.1134/S1063780X07070033

20. Aliev, Y. M. , H. Schluter, and A. Shivarova, Guided-wave Produced Plasmas, Springer, New York, 2000.
doi:10.1007/978-3-642-57060-5

21. Cojocaru, E., "Waveguides filled with bilayers of double-negative (DNG) and double-positive (DPS) metamaterials," Progress In Electromagnetics Research B, Vol. 32, 75-90, 2011.
doi:10.2528/PIERB11050604

22. Dmitriev, V. A. and A. O. Silva, "Nonreciprocal properties of surface plasmon-polaritons at the interface between two magnetized media: Exact analytical solutions," Progress In Electromagnetics Research Letters, Vol. 21, 177-186, 2011.

23. Lazarus, E. A., et al., "A comparison of sawtooth oscillations in bean and oval shaped plasmas," Plasma Physics and Controlled Fusion, Vol. 48, No. 2, L65-L72, 2006.
doi:10.1088/0741-3335/48/8/L01

24. Karpov, S. Y. and S. N. Stolyarov, "Propagation and transformation of electromagnetic waves in one-dimensional periodic structures," Physics Uspekhi, Vol. 36, No. 1, 1-22, 1993.
doi:10.1070/PU1993v036n01ABEH002061

25. Kumar, V., M. Mishra, and N. K. Joshi, "Study of a fluorescent tube as plasma antenna," Progress In Electromagnetics Research Letters, Vol. 24, 17-26, 2011.


© Copyright 2010 EMW Publishing. All Rights Reserved