PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 28 > pp. 101-113

DESIGN AND MODELLING OF A 1×N ALL-OPTICAL NONLINEAR MACH-ZEHNDER SWITCH CONTROLLED BY WAVELENGTH AND INPUT POWER

By S. Karimi, M. Ebnali-Heidari, and F. Forootan

Full Article PDF (455 KB)

Abstract:
The authors propose two 1×N all optical switches by taking the advantage of the accelerating behaviour of a spatial soliton in a Mach-Zehnder waveguide and the soliton's oscillating behaviour while propagating inside the nonlinear waveguide. The proposed switches consist of asymmetric and symmetric Mach-Zehnder waveguides followed by a homogenous Kerr medium, which is terminated by N parallel trapezoidal waveguides. In these switches, the signal is dropped from one of the desired output channels by changing the input pulse of wavelength or power. The numerical results confirm the switching application and show that the proposed 1×N switches can be used for wide ranges of wavelength and power, which are suitable for optical communication networks and optical data processing systems.

Citation:
S. Karimi, M. Ebnali-Heidari, and F. Forootan, "Design and Modelling of a 1×N All-Optical Nonlinear Mach-Zehnder Switch Controlled by Wavelength and Input Power," Progress In Electromagnetics Research M, Vol. 28, 101-113, 2013.
doi:10.2528/PIERM12100504

References:
1. Nakamura, H., Y. Sugimoto, and K. Asakawa, "Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks," Optics Express, Vol. 12, No. 26, 6606-6614, 2004.
doi:10.1364/OPEX.12.006606

2. Beggs, D. M., et al., "Ultra compact and low-power optical switch based on silicon photonic crystals," Optics Letters, Vol. 33, No. 2, 147-149, 2008.
doi:10.1364/OL.33.000147

3. Cho, S. Y. and R. Soref, "Interferometer microring-resonant 2 x 2 optical switches," Optics Express, Vol. 16, No. 17, 13304-13314, 2008.
doi:10.1364/OE.16.013304

4. Ridolfo, A., et al., "All optical switch of vacuum Rabi oscillations: The ultrafast quantum eraser," Phys. Rev. Lett., Vol. 106, No. 1, 013601, 2011.
doi:10.1103/PhysRevLett.106.013601

5. Lal, V. , et al., "Monolithic wavelength converters for high-speed packet-switched optical networks," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 13, No. 1, 49-57, 2007.
doi:10.1109/JSTQE.2006.884406

6. Ebnali-Heidari, M., M. K. Moravvej-Farshi, and A. Zarifkar, "Multi channel wavelength conversion using fourth-order soliton decay," Journal of Lightwave Technology, Vol. 25, No. 9, 2571-2578, 2007.
doi:10.1109/JLT.2007.903556

7. Sherwood-Droz, N., et al., "Optical 4 x 4 hitless slicon router for optical networks-on-chip (NoC)," Optics Express, Vol. 16, No. 20, 15915-15922, 2008.
doi:10.1364/OE.16.015915

8. Bakhshi, S., M. K. Moravvej-Farshi, and M. Ebnali-Heidari, "Design of an ultracompact low-power all-optical modulator by means of dispersion engineered slow light regime in a photonic crystal Mach-Zehnder interferometer," Applied Optics, Vol. 51, No. 14, 2687-2692, 2012.
doi:10.1364/AO.51.002687

9. Lai, D. M., C. Kwok, and K. K. Wong, "All-optical picoseconds logic gates based on a fiber optical parametric amplifier," Optics Express, Vol. 16, No. 22, 18362-183670, 2008.
doi:10.1364/OE.16.018362

10. Gayen, D. K. and J. N. Roy, "All-optical arithmetic unit with the help of terahertz-optical-asymmetric-demultiplexer-based tree architecture," Applied Optics, Vol. 47, No. 7, 933-943, 2008.
doi:10.1364/AO.47.000933

11. Tu, X., F. Liu, and N. Xu, "Design of high channel-count optical fiber filters based on sampled Bragg grating with discrete linear chirp structure," Optics and Precision Engineering, 2010.

12. Bitarafan, M. , M. Moravvej-Farshi, and M. Ebnali-Heidari, "Proposal for postfabrication fine-tuning of three-port photonic crystal channel drop filters by means of optofluidic infiltration," Applied Optics, Vol. 50, No. 17, 2622-2627, 2011.
doi:10.1364/AO.50.002622

13. Lu, H., et al., "Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator," Optics Express, Vol. 19, No. 4, 2910-2915, 2011.
doi:10.1364/OE.19.002910

14. Wu, , Y. D., et al., "All-optical switch based on the local nonlinear Mach-Zehnder interferometer," Optics Express, Vol. 15, No. 16, 9883-9892, 2007.
doi:10.1364/OE.15.009883

15. Camargo, E., H. Chong, and R. de la Rue, "2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure," Optics Express, Vol. 12, No. 4, 588-592, 2004.
doi:10.1364/OPEX.12.000588

16. Garzia, F., C. Sibilia, and M. Bertolotti, "Swing effect of spatial soliton," Optics Communications, Vol. 139, No. 4-6, 193-198, 1997.
doi:10.1016/S0030-4018(97)00128-4

17. Suryanto, A. and E. van Groesen, "On the swing effect of spatial inhomogeneous NLS solitons," Journal of Nonlinear Optical Physics and Materials, Vol. 10, No. 2, 143-152, 2001.
doi:10.1142/S0218863501000498

18. Suryanto, A. and E. van Groesen, "Break up of bound-N-spatial-soliton in a ramp waveguide," Optical and Quantum Electronics, Vol. 34, No. 5, 597-606, 2002.
doi:10.1023/A:1015685122513

19. Moravvej-Farshi, M., M. E. Heidari, and A. Zarifkar, "Spatial solitons in compound ramp waveguides," Proceedings of CAOL 2005 Second International Conference on Advanced Optoelectronics and Lasers, Vol. 2, 160-163, 2005.
doi:10.1109/CAOL.2005.1553946

20. Agrawal, G. P., Nonlinear Fiber Optics, 2nd Ed., Academic Press, 2001.

21. Agrawal, G. P., Fiber Optic Communication Systems, Wiley-Interscience, 2002.
doi:10.1002/0471221147

22. Ebnali-Heidari, M., M. K. Moravvej-Farshi, and A. Zarifkar, "Swing effect of spatial solitons propagating through Gaussian and triangular waveguides," Applied Optics, Vol. 48, No. 26, 5005-5014, 2009.
doi:10.1364/AO.48.005005

23. Aceves, A. B., J. V. Moloney, and A. C. Newell, "Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface," Phys. Rev. A, Vol. 39, 1809-1827, 1989.
doi:10.1103/PhysRevA.39.1809

24. Kuo, C. W., et al., "Analyzing multilayer optical waveguide with all nonlinear layers," Optics Express, Vol. 15, No. 5, 2499-2516, 2007.
doi:10.1364/OE.15.002499

25. Berrettini, G., et al., "Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate," IEEE Photonics Technology Letters, Vol. 18, No. 8, 917-919, 2006.
doi:10.1109/LPT.2006.873570

26. Niwa, S., et al., "Experimental demonstration of 1 x 4 InP/InGaAsP optical integrated multimode interference waveguide switch," 20th International Conference on Indium Phosphide and Related Materials, 2008, IPRM 2008, 1-4, 2008.
doi:10.1109/ICIPRM.2008.4702944

27. Scarmozzino, R., et al., "Numerical techniques for modeling guided-wave photonic devices," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 6, No. 1, 150-162, 2000.
doi:10.1109/2944.826883


© Copyright 2010 EMW Publishing. All Rights Reserved