Vol. 29
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-01-31
Reconstructing Constitutive Parameters of Inhomogeneous Planar Layered Chiral Media Based on the Optimization Approach
By
Progress In Electromagnetics Research M, Vol. 29, 29-39, 2013
Abstract
This paper presents a frequency domain technique for reconstructing the constitutive parameters of inhomogeneous planar layered chiral media based on an optimization approach. The measured co- and cross-reflection and transmission coefficients are used to extract profiles of electromagnetic parameters of the inhomogeneous chiral media. To identify the functions of constitutive parameters of the chiral media, Fourier series expansions and Genetic Algorithm (GA) are utilized. Since the optimization problem is highly non-linear, enhanced GA in which a fuzzy system is used for improving the speed and accuracy of GA. The performance and feasibility of the proposed reconstruction method is proven using two typical examples.
Citation
Davoud Zarifi, Ali Farahbakhsh, Ali Abdolali, and Mohammad Soleimani, "Reconstructing Constitutive Parameters of Inhomogeneous Planar Layered Chiral Media Based on the Optimization Approach," Progress In Electromagnetics Research M, Vol. 29, 29-39, 2013.
doi:10.2528/PIERM12121702
References

1. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves on Chiral and Bi-isotropic Media, Artech House, Norwood, MA, 1994.

2. Serdyukov, A., I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications, Gordon and Breach Science Publishers, Amsterdam, Netherlands, 2001.

3. Viitanen, A. J. and I. V. Lindell, "Chiral slab polarization transformer for aperture antennas," IEEE Trans. Antennas Propag., Vol. 46, 1395-1397, Sep. 1998.
doi:10.1109/8.719989

4. Wu, Z. and B. Q. Zhang S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.
doi:10.1163/156939310791285173

5. Li, Z., F.-Q. Yang, and J.-F. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

6. Dong, J. F., J. Li, and F.-Q. Yang, "Guided modes in the four-layer slab waveguide containing chiral nihility core," Progress In Electromagnetics Research, Vol. 112, 241-255, 2011.

7. Naqvi, A., A. Hussain, and Q. A. Naqvi, "Waves in fractional dual planar waveguides containing chiral nihility metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1575-1586, 2010.
doi:10.1163/156939310792149614

8. Tuz, V. R., "Semi-infinite chiral nihility photonics: Parametric dependence, wave tunneling and rejection," Progress In Electromagnetics Research, Vol. 103, 139-152, 2010.
doi:10.2528/PIER10030706

9. Qamar, S. R., A. Naqvi, and A. A. Syed, "Radiation characteristics of elementary sources located in unbounded chiral nihility metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 713-722, 2011.
doi:10.1163/156939311794827294

10. Ahmad, S. and Q. A. Naqvi, "Directive EM radiation of a line source in the presence of a coated nihility cylinder," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 761-771, 2009.
doi:10.1163/156939309788019886

11. Kayani, T. M., M. Q. Mehmood, M. J. Mughal, and T. Rahim, "Analysis of the field focused by hyperbolic lens embedded in chiral medium," Progress In Electromagnetics Research M, Vol. 20, 34-56, 2011.

12. Sabah, C. and H. G. Roskos, "Design of a terahertz polarization rotator based on a periodic sequence of chiral metamaterial and dielectric slab," Progress In Electromagnetics Research, Vol. 134, 301-314, 2012.
doi:10.2528/PIER11112605

13. Lindell, I. V., A. H. Sihvola, A. J. Viitanen, and S. A. Tretyakov, "Geometrical optics in inhomogeneous chiral media with applications to polarization correction of inhomogeneous microwave lens antennas," Journal of Electromagnetic Waves and Applications, Vol. 4, No. 6, 533-548, 1990.

14. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1990.

15. Urbani, F., L. Vegni, and A. Toscano, "Inhomogeneous layered planar structures: An analysis of the reflection coefficients," IEEE Trans. Magn., 2771-2774, 1998.
doi:10.1109/20.717644

16. Vegni, L. and A. Toscano, "Full-wave analysis of planar stratified with inhomogeneous layers," IEEE Trans. Antennas Propag., Vol. 48, No. 4, 631-633, 2000.
doi:10.1109/8.843679

17. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using Taylor's series expansion," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 130-135, 2006.
doi:10.1109/TAP.2005.861577

18. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using Fourier series expansion," IEEE Trans. Antennas Propag., Vol. 55, No. 2, 489-493, 2007.
doi:10.1109/TAP.2006.889923

19. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using the method of moments," Journal of Electromagnetic Waves and Applications, Vol. 21, 1925-1937, 2007.
doi:10.1163/156939307783152984

20. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using equivalent sources method," Progress In Electromagnetics Research, Vol. 72, 61-73, 2007.
doi:10.2528/PIER07030802

21. Zarifi, D., A. Abdolali, M. Soleimani, and V. Nayyeri, "Inhomogeneous planar layered chiral media: Analysis of wave propagation and scattering using Taylor's series expansion," Progress In Electromagnetics Research, Vol. 125, 119-135, 2012.
doi:10.2528/PIER11122804

22. Nayyeri, , V., D. Zarifi, and M. Soleimani, "Electromagnetic scattering from inhomogeneous planar layered media using notation of propagators," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 6, 875-884, 2012.
doi:10.1080/09205071.2012.710359

23. Tue, T. J. and C. H. Liang, "Reconstruction of the permittivity profile of an inhomogeneous medium using an equivalent network method," IEEE Trans. Antennas Propag., Vol. 41, No. 12, 1719-1726, 1993.
doi:10.1109/8.273317

24. Cui, T. and H. Liang, "Nonlinear differential equation for the reflection coefficient of an inhomogeneous lossy medium and its inverse scattering solution," IEEE Trans. Antennas Propag., Vol. 42, No. 5, 621-622, 1994.
doi:10.1109/8.299560

25. Mikhnev, V. and P. Vainikainen, "Two-step inverse scattering method for one-dimensional permittivity profiles," IEEE Trans. Antennas Propag., Vol. 48, No. 2, 293-298, 2000.
doi:10.1109/8.833079

26. Emad, A. M., E. A. Hashish, and M. I. Hassan, "Inversion of lossy dielectric profiles using particle swarm optimization," Progress In Electromagnetics Research M, Vol. 9, 93-105, 2009.
doi:10.2528/PIERM09072604

27. Ahmad, F. H. and M. Razzaghi, "Simultaneous reconstruction of approximate pro¯les of an inhomogeneous lossy medium through a collocation method," J. Phys. D: Appl. Phys., Vol. 30, No. 23, 3274-3278, 1997.
doi:10.1088/0022-3727/30/23/011

28. Ahmad, F. H., R. M. Castellane, and E. L. Miller, "Technique for evaluation of pro¯les of a composite chiral slab through inversion and pseudospectral approximation," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1709-1717, 2006.
doi:10.1109/TAP.2006.875485

29. Rikte, S., G. Kristensson, and M. Anderson, "Propagation in bianisotropic media-re°ection and transmission," IEEE Proc. Microw. Antennas Propag., Vol. 148, No. 1, 29-36, 2001.
doi:10.1049/ip-map:20010215

30. Farahbakhsh, A., S. Tavakoli, and A. Seifolhosseini, "Enhancement of genetic algorithm and ant colony optimization techniques using fuzzy systems," IEEE International Advance Computing Conference, 2009.

31. Jaggard, D., X. Sun, and J. Liu, "On the chiral Riccati equation," Microw. Opt. Technol. Lett., Vol. 5, No. 3, 107-112, 1992.
doi:10.1002/mop.4650050304