Vol. 30
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-03-18
A Fast Tuning Method for Microwave Filter Using VF-Asm Technology
By
Progress In Electromagnetics Research M, Vol. 30, 25-37, 2013
Abstract
A novel microwave filter tuning method based on vector fitting and aggressive space mapping (VF-ASM) technology is presented in this paper. The filter tuning is performed as a two step procedure. First, the equivalent circuit parameters are extracted through vector fitting method by a series of S-parameter measurements. Second, the optimal screw positions are calculated through ASM techniques. this novel tuning technique has been tested successfully with cross-coupled six-resonator and direct coupled eight-resonator filters.
Citation
Yong-Liang Zhang, Tao Su, Zhi-Peng Li, and Chang-Hong Liang, "A Fast Tuning Method for Microwave Filter Using VF-Asm Technology," Progress In Electromagnetics Research M, Vol. 30, 25-37, 2013.
doi:10.2528/PIERM13012201
References

1. Cameron, R. J., "Generalized coupling matrix synthesis methods for Chebyshev filtering functions," IEEE Trans. on Microw. Theory and Tech., Vol. 47, 433-442, Apr. 1999.
doi:10.1109/22.754877

2. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Trans. on Microw. Theory and Tech., Vol. 51, 1-10, Jan. 2003.
doi:10.1109/TMTT.2002.806937

3. Harscher, P., R. Vahldieck, and S. Amari, "Automated filter tuning using generalized low-pass prototype networks and gradient-based parameter extraction," IEEE Trans. on Microw. Theory and Tech., Vol. 49, 2532-2538, Dec. 2001.
doi:10.1109/22.971646

4. Garcia-Lamperez, A., T. K. Sarkar, and M. Salazar-Palma, "Generation of accurate rational models of lossy systems using the Cauchy method," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 6, 490-492, Oct. 2004.

5. Macchiarella, G. and D. Traina, "A formulation of the Cauchy method suitable for the synthesis of lossless circuit models of microwave filter from lossy measurements," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 5, 243-245, May 2006.
doi:10.1109/LMWC.2006.873583

6. Traina, D., G. Macchiarella, and T. K. Sarkar, "New general formulation of the Cauchy method for the accurate model extraction of higher order microwave systems," Microwave and Optical Technology Letters, Vol. 49, No. 8, 1957-1961, 2007.
doi:10.1002/mop.22627

7. Han, Y. B., Y. J. Zhao, and H. M. Lu, "Coupling matrix method for diagnosis and tuning of microwave filters," Journal of Xidian University, Vol. 35, No. 4, 703-706, 2008.

8. Chen, J. Z., C. H. Liang, J. Chen, et al. "A parameter extraction method for microwave filters based on curve fitting technique," Journal of Xidian University, Vol. 38, No. 4, 101-105, 2011.

9. Michalski, J. J., "Inverse modeling in application for sequential tuning," Progress In Electromagnetics Research, Vol. 115, 113-129, 2011.

10. Michalski, J. J., "On linear mapping of filter characteristic to position of tuning elements in filter tuning algorithm," Progress In Electromagnetics Research, Vol. 123, 279-298, 2012.
doi:10.2528/PIER11101009

11. Kacmajor, T. and J. J. Michalski, "Filter tuning based on linear decomposition of scattering characteristics," Progress In Electromagnetics Research, Vol. 135, 451-464, 2013.

12. Ness, J. B., "A unified approach to the design, measurement, and tuning of coupled-resonator filters," IEEE Trans. on Microw. Theory and Tech., Vol. 46, No. 4, 343-351, 1998.
doi:10.1109/22.664135

13. Thal, H. L., "Computer aided filter alignment and diagnosis," IEEE Trans. on Microw. Theory and Tech., Vol. 26, No. 12, 958-963, 1978.
doi:10.1109/TMTT.1978.1129528

14. Hsu, H. T., H. W. Yao, K. A. Zaki, and A. E. Atia, "Computer-aided diagnosis and tuning of cascaded coupled resonators filters," IEEE Trans. on Microw. Theory and Tech., Vol. 50, No. 4, 1137-1145, 2002.
doi:10.1109/22.993417

15. Miraftab, V. and R. R. Mansour, "Computer-aided tuning of microwave filters using fuzzy logic," IEEE Trans. on Microw. Theory and Tech., Vol. 50, No. 2, 2781-2788, 2002.
doi:10.1109/TMTT.2002.805291

16. Meng, W. and K.-L. Wu, "Analytical diagnosis and tuning of narrowband multi-coupled resonator filters," IEEE Trans. on Microw. Theory and Tech., Vol. 54, 3765-3771, Oct. 2006.

17. Meng, M. and K.-L. Wu, "An analytical approach to computer-aided diagnosis and tuning of lossy microwave coupled resonator filters," IEEE Trans. on Microw. Theory and Tech., Vol. 57, 3188-3195, Dec. 2009.
doi:10.1109/TMTT.2009.2033868

18. Hsu, H.-T., Z. Zhang, and K. A. Zaki A. E. Atia, "Parameter extraction for symmetric coupled-resonator filters," IEEE Trans. on Microw. Theory and Tech., Vol. 50, 2971-2978, Dec. 2002.
doi:10.1109/TMTT.2002.805283

19. Esmaeili, M. and A. Borji, "Diagnosis and tuning of multiple coupled resonator filters," 18th Iranian Conference on Electrical Engineering (ICEE), Iran, 2010.

20. Pepe, G., F.-J. Gortz, and H. Chaloupka, "Sequential tuning of microwave ¯lters using adaptive models and parameter extraction," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 1, 22-31, Jan. 2005.
doi:10.1109/TMTT.2004.839342

21. Bandler, J. W., et al. "Electromagnetic optimization exploiting aggressive space mapping," IEEE Trans. on Microw. Theory and Tech., Vol. 43, 2874-2882, Dec. 1995.
doi:10.1109/22.475649

22. Gustavsen, B. and A. Semlyen, "Rational approximation of frequency domain responses by vector fitting," IEEE Trans. on Power Delivery, Vol. 14, No. 3, 1052-1061, Jul. 1999.
doi:10.1109/61.772353