Vol. 30

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Design of Metaparticles as Sharp Frequency-Selective Obscurant Aerosols

By Sharhabeel Alyones, Al. V. Jelinek, Michael Granado, and Charles W. Bruce
Progress In Electromagnetics Research M, Vol. 30, 141-152, 2013


In this article, artificial aerosol metaparticles are investigated. These particles are based on interacting single split rectangular resonators (SRRs) imprinted on a one-sided thin dielectric substrate. These particles produce sharper transmission bandstops with adjustable bandwidths compared to conventional artificial aerosol obscurants like fibers, spheres, discs. The particle design is performed in the microwave region with the intention to be scalable to the infrared. Particles with couplings between two, three, and four SRRs are introduced. Numerical simulations and experimental measurements of the transmission parameter of the particles are introduced and compared with fibrous aerosols. These particles may be used as good electromagnetic obscurants in the atmosphere.


Sharhabeel Alyones, Al. V. Jelinek, Michael Granado, and Charles W. Bruce, "Design of Metaparticles as Sharp Frequency-Selective Obscurant Aerosols," Progress In Electromagnetics Research M, Vol. 30, 141-152, 2013.


    1. Alyones, S. , C. W. Bruce, and A. K. Buin, "Numerical methods for solving the problem of electromagnetic scattering by a finite thin conducting fiber," IEEE Trans. Antennas Propag., Vol. 55, 1856-1861, 2007.

    2. Bruce, C. W. and S. Alyones, "Visible and infrared optical properties of stacked cone graphitic microtubes," Appl. Opt., Vol. 51, No. 16, Jun. 201.

    3. Alyones, S. and C. W. Bruce, "Electromagnetic scattering by finite conducting fiber: Limitation of a previous published code," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 7, 1021-1030, 2011.

    4. Bruce, C. W. and S. Alyones, "Extinction efficiencies for metallic fibers in the infrared," Appl. Opt., Vol. 48, 5095-5098, 2009.

    5. Bruce, C. W., A. V. Jelinek, S. Wu, S. Alyones, and Q. S. Wang, "Millimeter-wavelength investigation of fibrous aerosol absorption and scattering properties," Appl. Opt., Vol. 43, 6648-6655, 2004.

    6. Velasgo, V. G., "The electrodynamics of substances with simultaneously negative values of epsilon and mu," Sov. Phys. Uspekhi, Vol. 10, 1968.

    7. Pendry, J. B., A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 1999.

    8. Simons, R. N., Coplaner Waveguide Circuits, Components, and Systems, Wiley-IEEE Press, 2001.

    9. Wolff, I., Coplanar Microwave Integrated Circuits, Wiley-Interscience, 2006.

    10. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.

    11. Al-Naib, I. A. I., C. Jansen, and M. Koch, "High Q-factor metasurfaces based on miniaturized asymmetric single split resonator," Appl. Phys. Lett., Vol. 94, 2009.

    12. Fedotov, V. A., M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, "Sharp trapped resonances in planar metamaterials with a broken structural symmetry," Phys. Rev. Lett., Vol. 99, 2007.

    13. Elwi, T. A., "A further investigation on the performance of the broadside coupled rectangular split ring resonators," Progress In Electromagnetic Research Letters, Vol. 34, 1-8, 2012.

    14. Penciu, R. S., K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multigap individual and coupled split-ring resonator structures," Optical Society of America, Vol. 16, No. 22, 1-14, Oct. 2008.

    15. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design theory and experiments," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 33-41, Oct. 2003.

    16. Balmaz, P. G. and O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," J. Appl. Phys., Vol. 92, No. 5, 2929-2936, Jun. 2002.

    17. Hong, J. S. and M. J. Lancaster, "Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 7, 2000.

    18. Shelkovnikov, A. and D. Budimir, "Left-handed rectangular waveguide bandstop filters," Microwave and Optical Technology Letters, Vol. 48, 2006.

    19. Rigi-Tamandani, A., J. Ahmadi-Shokouh, and S. Tavakoli, "Wideband planar split ring resonator based metamaterials," Progress In Electromagnetic Research M, Vol. 28, 115-128, 2013.

    20. CST microwave studio, Sonnet Software Inc., , http://www.CST.com.

    21. Jin, X., J. Park, H. Zheng, S. Lee, Y. Lee, J. Rhee, K. Kim, H. S. Cheong, and W. Jang, "Highly-dispersive transparency at the optical frequencies in planar metamaterials based on two-bright-mode coupling," Optics Express, Vol. 19, 22, 2011.