PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 34 > pp. 79-87

COPLANAR-PGL TRANSITIONS ON HIGH RESISTIVITY SILICON SUBSTRATE IN THE 57-64 GHZ BAND AND INFLUENCE OF THE PROBE STATION ON THE PERFORMANCES

By M. Grzeskowiak, J. Emond, G. Lissorgues, S. Protat, F. Deshours, E. Richalot, and O. Picon

Full Article PDF (312 KB)

Abstract:
We present Coplanar-Planar Goubau Line (PGL) transitions designed on high-resistivity Silicon to characterize a PGL using microwave probing. These transitions are optimized in the 57-64 GHz frequency band to present excellent electrical performances despite the field disturbance of the measurement setup. As the transitions are positioned on a probe station chuck, a glass substrate is added between the transition under test and the metallic chuck to minimize the disturbance. 3-D full-wave electromagnetic field simulations performed on a commercial software and on-wafer measurements show almost comparable results in term of scattering matrix parameters. Low losses are attained with a measured average transmission parameter of 2.5 dB at 60 GHz for a length of 8 mm of a back-to-back structure with the transitions at the extremities. The measured average insertion loss and return loss per transition are better than 1.36 dB and 11 dB, respectively, with a bandwidth greater than 7% at 60 GHz for a length of 1 mm (about a half of the wavelength at 60 GHz).

Citation:
M. Grzeskowiak, J. Emond, G. Lissorgues, S. Protat, F. Deshours, E. Richalot, and O. Picon, "Coplanar-Pgl Transitions on High Resistivity Silicon Substrate in the 57-64 GHz Band and Influence of the Probe Station on the Performances," Progress In Electromagnetics Research M, Vol. 34, 79-87, 2014.
doi:10.2528/PIERM13110704

References:
1. Kuri, T., K. Kitayama, A. Stohr, and Y. Ogawa, "Fiber-optic millimeter-wave downlink system using 60 GHz-band external modulation," Journal of Lightwave Technology, Vol. 17, 799-806, 1999.
doi:10.1109/50.762895

2. Yang, T. H., C. F. Chen, T. Y. Huang, C. L. Wang, and R. B. Wu, "A 60 GHz LTCC transition between microstrip line and substrate integrated waveguide," Asia-Pacific Conference Proceedings --- | Microwave Conference Proceedings, Vol. 1, 2005.
doi:10.1109/TMTT.2010.2050094

3. Bulja, S. and D. Mirshekar-Syahkal, "Novel wideband transition between coplanar waveguide and microstrip line," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 7, 1851-1857, 2010.
doi:10.1109/EUMC.2007.4405145

4. Patrovsky, A., M. Daigle, and K.Wu, "Millimeter-wave wideband transition from CPW to substrate integrated waveguide on electrically thick high-permittivity substrates," 2007 European Microwave Conference, 138-141, 2007.
doi:10.1109/TMTT.2005.859862

5. Stephens, D., P. R. Young, and I. D. Robertson, "Millimeter-wave substrate integrated waveguides and filters in photoimageable thick-film technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 12, 3832-3838, 2005.

6. Boone, J., S. Krishnan, and S. Bhansali, "Silicon based vertical micro-coaxial for high frequency packaging technologies ," Progress In Electromagnetics Research B, Vol. 50, 1-7, 2013.
doi:10.1049/el.2010.3262

7. Enayati, A., S. Brebels, W. Deraedt, and G. A. E. Vandenbosch, "Vertical via-less transition in MCM Technology for millimetre-wave applications," Electronics Letters, Vol. 46, No. 4, 287-288, 2010.

8. Gauthier, G. P., L. P. Katehi, and G. M. Rebeiz, "W-band finite ground coplanar waveguide (FGCPW) to microstrip transition," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 1, 107-109, 1998.
doi:10.1109/ICCPS.2012.6384277

9. Xia, L. and R. Xu, "Broadband LTCC transition from coaxial connector to stripline for 60 GHz application," International Conference on Computational Problem-Solving (ICCP), 52-54, 2012.

10. Zandieh, A., N. Ranjkesh, S. Safavi-Naeini, and M. Basha, "A low loss CPW to dielectric waveguide transition for millimeter-wave hybrid integration," Antennas and Propagation Society International Symposium (APSURSI), 1-2, 2012.
doi:10.1049/el.2010.0986

11. El-Gibari, M., D. Averty, C. Lupi, M. Brunet, H. Li, and S. Toutain, "Ultra-broad bandwidth and low-loss GCPW-MS transitions on low k-substrates," Electronics Letters, Vol. 46, No. 13, 931-933, 2010.
doi:10.1049/iet-map.2010.0025

12. Xu, Y., C. Nerguizian, and R. G. Bosisio, "Wideband planar goubau line integrated circuit components at millimetre waves," IET Microwave, Antennas Propagation, Vol. 5, No. 8, 882-885, 2011.
doi:10.1109/LMWC.2005.859976

13. Treizebre, A., T. Akalin, and B. Bocquet, "Planar excitation of goubau transmission lines for THz BioMEMS," IEEE Microwave and Wireless Letters, Vol. 15, No. 12, 886-888, 2005.
doi:10.1049/iet-map.2013.0093

14. Xu, Y. and R. G. Bosisio, "Wideband planar Goulau line (PGL) couplers and six-port circuits compatible with short range (60 GHz) radio," IET Microwaves, Antennas Propagation, Vol. 7, No. 12, 985-990, 2013.
doi:10.1109/LAWP.2013.2278035

15. Sanchez-Escuderos, D., M. Ferrando-Battaler, J. I. Herranz, and M. Cabedo-Fabres, "Periodic leaky-wave antenna on planar Goubau line at millimeter-wave frequencies," IEE Antennas and Wireless Propagation Letters, Vol. 12, 1006-1009, 2013.
doi:10.1002/mop.26470

16. Emond, J., M. Grzeskowiak, G. Lissorgues, S. Protat, F. Deshours, E. Richalot, and O. Picon, "A low planar Goubau line and a coplanar-PGL transition on high resistivity Silicon substrate in the 57--64 GHz band, ," Microwave and Optical Letters, Vol. 54, No. 1, 164-168, 2012.

17. Grzeskowiak, M., J. Emond, S. Protat, G. Lissorgues, F. Deshours, E. Richalot, and O. Picon, "Optimization on of a quasi loss less air-cavity inverted microstrip line form microwave frequencies and comparison with the coplanar line at 60 GHz," Progress In Electromagnetics Research, Vol. 43, 67-78, 2013.

18., "On-wafer vector network analyzer calibration and measurements," Application Note.
doi:10.1002/mop.20812

19. Safwat, M. E., "Study of microstrip mode in RF on-wafer probes," Microwave and Optical Letters, Vol. 45, No. 4, 324-328, 2005.
doi:10.1002/mop.27245

20. Ghaff, , F. A. and A. Shamim, "Design of silicon-based fractal antennas," Microwave and Optical Letters, Vol. 55, No. 1, 180-186, 2013.


© Copyright 2010 EMW Publishing. All Rights Reserved