Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 34 > pp. 163-170


By M. Ruphuy, Z. Ren, and O. M. Ramahi

Full Article PDF (232 KB)

We present a flat lens design that provides focusing with no aberration. By profiling the refractive index of the lens to generate a spherical wavefront at the exit side of the lens, the transmitted fields converge at a specified focal point. The focusing is achieved using primarily the dispersion phenomenon. We show through numerical examples that focusing without aberration can be achieved at a specific frequency and that focusing is possible over a narrow range of frequencies providing that the dispersion is minimal. Additionally, we show that the same principle used to design the lens can be used to design flat reflectors with a focal point focusing.

M. Ruphuy, Z. Ren, and O. M. Ramahi, "Flat Far Field Lenses and Reflectors," Progress In Electromagnetics Research M, Vol. 34, 163-170, 2014.

1. Zghal, M., H.-E. Bouali, Z. B. Lakhdar, and H. Hamam, "The first steps for learning optics: Ibn Sahls, Al-Haythams and Youngs works on refraction as typical examples," The Education and Training in Optics and Photonics Conference (ETOP) 2007, Ottawa, Ontario, Canada, 2007.

2. King, H. C., The History of the Telescope, Courier Dover Publications, 2003.

3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.

4. Williams, J. M., "Some problems with negative refraction," Phys. Rev. Lett., Vol. 87, 249703-1, 2001.

5. Pendry, J., "Pendry replies to Williams," Phys. Rev. Lett.., Vol. 87, 249704-1, 2001.

6. Pendry, J., "Pendry's reply to Hooft," Phys. Rev. Lett., Vol. 87, 249702-1, 2001.

7. Walser, R. M., A. P. Valanju, and P. M. Valanju, "Comment on extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 87, 119701-1, 2001.

8. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 18, 2006.

9. Liu, Z., S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Nano. Lett., Vol. 7, 403-408, 2007.

10. Yang, R., W. Tang, Y. Hao, and I. Youngs, "A coordinate transformation-based broadband flat lens via microstrip array," IEEE Antennas Wireless Propagat. Lett., Vol. 10, 99-102, 2011.

11. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.

12. Kwon, D. H. and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New J. Phys., Vol. 10, 115023, 2008.

13. Sussman, M., "Elementary diffraction theory of zone plates," Am. J. Phys., Vol. 28, 394-398, 1960.

14. Wood, R. W., Physical Optics, The Macmillan Company, 1905.

15. Sands, P. J., "Third-order aberrations of inhomogeneous lenses," J. Opt. Soc. Am., Vol. 60, 1436-1443, 1970.

16. Sands, P. J., "Inhomogeneous lenses, III. Paraxial optics," J. Opt. Soc. Am., Vol. 61, 879-885, 1971.

17. Bass, M. Ed., Handbook of Optics, 3rd Ed., The McGraw-Hill Companies, 2010.

18. Ilyas, S. and M. Gal, "Gradient refractive index planar microlens in Si using porous silicon," Appl. Phys. Lett., Vol. 89, 211123-3, 2006.

19. Aieta, F., P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin °at lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Letters, Vol. 12, 4932-4936, 2012.

20. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, 2011.

21. Chen, X., L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, "Dual-polarity plasmonic metalens for visible light," Nature Communications, Vol. 3, Article No. 1198, 2012, doi:10.1038/ncomms2207.

22. Liu, R., Q. Cheng, J. Y. Chin, J. J. Mock, T. J. Cui, and D. R. Smith, "Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials," Opt. Express, Vol. 17, 21030-21041, 2009.

23. Ma, H. F., X. Chen, H. S. Xu, X. M. Yan, W. X. Jiang, and T. J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials,", Vol. 95, 094107, 2009.

24. Chen, X., H. F. Ma, X. Y. Zou, W. X. Jiang, and T. J. Cui, "Three-dimensional broadband and high-directivity lens antenna made of metamaterials," J. Appl. Phys., Vol. 110, 044904-8, 2011.

25. Ma, H. F., X. Chen, X. M. Yang, W. X. Jiang, and T. J. Cui, "Design of multibeam scanning antennas with high gains and low sidelobes using gradient-index metamaterials," J. Appl. Phys., Vol. 107, 014902-9, 2010.

26. Bakoglu, H., Circuits, Interconnections, and Packaging for VLSI, Addison-Wesley, 1990.

27. Kabiri, A., Q. He, M. Kermani, and O. M. Ramahi, "Design of a controllable delay line," IEEE Trans. Advanced Packaging, Vol. 33, 1080-1087, 2010.

28. Choi, M., S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K-Y. Kang, Y-H. Lee, N. Park, and B. Min, "A terahertz metamaterial with unnaturally high refractive index," Nature, Vol. 470, 369-373, 2011.

29. Ramahi, O. M. and M. Ruphuy, "Flat lenses and re°ectors and method for construction,", Patent Application No. US61912634, 2010.

© Copyright 2010 EMW Publishing. All Rights Reserved