Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 36 > pp. 67-76


By Y. Liu, J. Zou, S. Y. Xu, and Z. P. Chen

Full Article PDF (715 KB)

A novel rotational motion compensation algorithm for high-resolution inverse synthetic aperture radar (ISAR) imaging based on golden section search (GSS) method is presented. This paper focuses on the migration through cross-range resolution cells (MTCRRC) compensation, which requires rotation angle and center as priori information. The method is nonparametric and uses entropy criterion to estimate rotation angle and rotation center, which are used for rotational motion compensation. Experimental results show that the rotational motion in ISAR imaging can be effectively compensated. Moreover, the proposed method is robust and computationally more efficient compared to the parametric methods.

Y. Liu, J. Zou, S. Y. Xu, and Z. P. Chen, "Nonparametric Rotational Motion Compensation Technique for High-Resolution ISAR Imaging via Golden Section Search," Progress In Electromagnetics Research M, Vol. 36, 67-76, 2014.

1. Munoz-Ferreras, J. M. and F. Pérez-Martínez, "Uniform rotational motion compensation for inverse synthetic aperture radar with non-cooperative targets," IET Radar Sonar Navig., Vol. 2, No. 1, 25-34, Jan. 2008.

2. Liu, J. H., X. Li, S. K. Xu, and Z. W. Zhuang, "ISAR imaging of non-uniform rotation targets with limited pulse via compressed sensing," Progress In Electromagnetics Research B, Vol. 41, 285-305, 2012.

3. Xing, M., R. Wu, J. Lan, and Z. Bao, "Migration through resolution cell compensation in ISAR imaging," IEEE Geosci. Remote Sens. Lett., Vol. 1, No. 2, 141-144, Apr. 2004.

4. Lu, G. and Z. Zhou, "Compensation of scatterer migration through resolution cell in inverse synthetic aperture radar imaging," IEE Proc., Radar, Sonar Navig., Vol. 147, No. 2, 80-85, Apr. 2000.

5. Hu, J. M., W. Zhou, Y. W. Fu, L. Xiang, and J. Ning, "Uniform rotational motion compensation for ISAR based on phase cancellation," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 4, 636-641, Jul. 2011.

6. Wang, Y. and Y. C. Jiang, "A novel algorithm for estimating the rotation angle in ISAR imaging," EEE Geosci. Remote Sens. Lett., Vol. 5, No. 4, 608-609, Oct. 2008.

7. Yeh, C. M., C. M., J. Xu, Y. N. Peng, and X. T. Wang, "Cross-range scaling for ISAR based on image rotation correlation," IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 3, 597-601, Jul. 2009.

8. Li, X., H. Gu, and G. S. Liu, "A method for estimating the rotation angle of the ISAR image," Acta Electron. Sin., Vol. 28, No. 6, 44-47, Jun. 2000.

9. Zhang, W. C., Z. P. Chen, and B. Yuan, "Rotational motion compensation for wide-angle ISAR imaging based on integrated cubic phase function," IET International Radar Conference 2013, 14-16, Apr. 2013.

10. Tsai, C. H., J. Kolibal, and M. Li, "The golden section search algorithm for finding a good shape parameter for meshless collocation methods," Engineering Analysis with Boundary Elements, Vol. 34, No. 8, 738-746, Aug. 2010.

11. Chang, Y. C., "N-dimension golden section search: Its variants and limitations," 2nd International Conference on Biomedical Engineering and Informatics, BMEI' 09,, 17-19, Oct. 2009.

12. Mensa, D. L., High Resolution Radar Imaging, Artech House, MA, 1981.

13. Wang, J., X. Liu, and Z. Zhou, "Minimum-entropy phase adjustment for ISAR," IEE Proc. Radar Sonar Navig., Vol. 151, No. 4, 203-209, Aug. 2004.

14. Pincus, S. M., "Approximate entropy as a measure of system complexity," Proc. Natl. Acad. Sci. USA Mathematics, Vol. 88, No. 4, 2297-2301, Mar. 1991.

15. Kim, K. T. and H. T. Kim, "One-dimensional scattering centre extraction for efficient radar target classi¯cation," IEE Proc. Radar Sonar Navig., Vol. 146, No. 3, 147-158, Jun. 1999.

© Copyright 2010 EMW Publishing. All Rights Reserved