Vol. 37
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-06-13
Focusing Translational Variant Bistatic Forward-Looking SAR Data Based on Two-Dimensional Non-Uniform FFT
By
Progress In Electromagnetics Research M, Vol. 37, 1-10, 2014
Abstract
Forward-looking imaging has extensive potential applications, such as self-navigation and self-landing. By choosing proper geometry, bistatic synthetic aperture radar (BiSAR) can break through the limitations of monostatic SAR on forward-looking imaging and provide possibility of the forward-looking imaging. In this special bistatic configuration, two problems involving large range cell migration (RCM) and large range-azimuth coupling are introduced by the forward-looking beam, which make it difficult to use traditional data focusing algorithms. To address these problems, a novel Omega-K algorithm based on two-dimensional non-uniform FFT (2-D NUFFT) for translational variant (TV) bistatic forward-looking SAR (BFSAR) imaging is proposed in this paper. In this study, we derive an accurate spectrum expression based on two-dimensional principle of stationary phase (2-D POSP). 2-D NUFFT is utilized to eliminate the range-variant term, which can make full use of the data and improve the computational efficiency as well. The experimental results, presented herein, demonstrate the effectiveness and advantages of the proposed algorithm.
Citation
Chan Liu, Shunsheng Zhang, Chunyang Dai, and Ji Zhou, "Focusing Translational Variant Bistatic Forward-Looking SAR Data Based on Two-Dimensional Non-Uniform FFT," Progress In Electromagnetics Research M, Vol. 37, 1-10, 2014.
doi:10.2528/PIERM14040501
References

1. Chan, Y. K. and V. C. Koo, "An introduction to synthetic aperture radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
doi:10.2528/PIERB07110101

2. Balke, J., "Field test of bistatic forward-looking synthetic aperture radar," Proc. Record of the IEEE 2005 Int. Radar Conf., 424-429, 2005.
doi:10.1109/RADAR.2005.1435862

3. Walterscheid, I., T. Espeter, J. Klare, and A. Brenner, "Bistatic spaceborne-airborne forward-looking SAR," Proc. of EUSAR, 986-989, 2010.

4. Espeter, T., I. Walterscheid, J. Klare, A. R. Brenner, and J. H. G. Ender, "Bistatic forward-looking SAR: Results of a spaceborne-airborne experiment," IEEE Geoscience and Remote Sensing Letters, Vol. 8, No. 4, 765-768, 2011.
doi:10.1109/LGRS.2011.2108635

5. Neo, Y. L., F.Wong, and I. G. Cumming, "A two-dimensional spectrum for bistatic SAR processing using series reversion," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 1, 93-96, 2007.
doi:10.1109/LGRS.2006.885862

6. Wang, R., O. Loffeld, Q. Ul-Ann, et al. "A bistatic point target reference spectrum for general bistatic SAR processing," IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 3, 517-521, 2008.
doi:10.1109/LGRS.2008.923542

7. Wu, J. J., J. Y. Yang, Y. L. Huang, Z. Liu, and H. G. Yang, "A new look at the point target reference spectrum for bistatic SAR," Progress In Electromagnetics Research, Vol. 119, 363-379, 2011.
doi:10.2528/PIER11050704

8. Loffeld, O., H Nies, V. Peters, and S. Knedlik, "Models and useful relations for bistatic SAR processing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 10, 2031-2038, 2004.
doi:10.1109/TGRS.2004.835295

9. Natroshvili, K., O. Lo®eld, H. Nies, A. Medrano-Ortiz, and S. Knedlik, "Focusing of general bistatic SAR con¯guration data with 2-D inverse scaled FFT," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 10, 2718-2727, 2006.
doi:10.1109/TGRS.2006.872725

10. Wang, R., Y. K. Deng, O. Loffeld, et al. "Processing the azimuth-variant bistatic SAR data by using monostatic imaging algorithms based on two-dimensional principle of stationary phase," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 10, 3504-3520, 2011.
doi:10.1109/TGRS.2011.2129573

11. Li, J., S. S. Zhang, and J. F. Chang, "Bistatic forward-looking SAR imaging based on two-dimensional principle of stationary phase," Proc. of MMWCST, 107-110, 2012.

12. Wang, R., O. Loffeld, H. Nies, and J. H. G. Ender, "Focusing spaceborne/airborne hybrid bistatic SAR data using wavenumber-domain algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 7, 2275-2283, 2009.
doi:10.1109/TGRS.2008.2010852

13. Wu, J. J., J. Y. Yang, Y. L. Huang, H. G. Yang, and H. C. Wang, "Bistatic forward-looking SAR: Theory and challenges," Proc. Record of the IEEE 2009 Int. Radar Conf., 1-4, 2009.

14. Zhang, S. S. and J. Li, "Forward-looking bistatic SAR imaging based on high order range equation and high order phase compensation," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 17-18, 2304-2314, 2012.
doi:10.1080/09205071.2012.733499

15. Qiu, X. L., D. H. Hu, and C. B. Ding, "Some reflections on bistatic SAR of forward-looking configuration," IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 4, 735-739, 2008.
doi:10.1109/LGRS.2008.2004506

16. Wu, J. J., Z. Y. Li, Y. L. Huang, J. Y. Yang, H. G. Yang, and Q. H. Liu, "Focusing bistatic forward-looking SAR with stationary transmitter based on Keystone transform and nonlinear chirp scaling," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 1, 148-152, 2014.
doi:10.1109/LGRS.2013.2250904

17. Liu, B., T. Wang, Q. Wu, and Z. Bao, "Bistatic SAR data focusing using an omega-k algorithm based on method of series reversion," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 8, 2899-2912, 2009.
doi:10.1109/TGRS.2009.2017522

18. Xiong, T., M. D. Xing, X. G. Xia, and Z. Bao, "New applications of Omaga-K algorithm for SAR data processing using effective wavelength at high squint," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 5, 3156{-3169, 2013.
doi:10.1109/TGRS.2012.2213342

19. Han, K., C. C. Chen, D. D. Shen, F. Pan, et al. "An accurate 2-D nonuniform fast Fourier transform method applied to high resolution SAR image reconstruction," Proc. of Metamaterials, 1-4, 2012.

20. Dai, C. Y. and X. L. Zhang, "Bistatic polar format algorithm based on NUFFT method," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17-18, 2328-2340, 2011.
doi:10.1163/156939311798806248

21. Andersson, F., R. Moses, and F. Natterer, "Fast Fourier methods for synthetic aperture radar imaging," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 1, 215-229, 2012.
doi:10.1109/TAES.2012.6129631

22. Liu, Z., J. Y. Yang, X. L. Zhang, H. Huang, and W. C. Li, "Imaging algorithm based on least-square NUFFT method for spaceborne/airborne squint mode bistatic SAR," Proc. of IGARSS, 396-399, 2012.

23. Liu, Q. H. and N. Nguyen, "An accurate algorithm for nonuniform fast Fourier transforms (NUFFT's)," IEEE Microwave and Guided Wave Letters, Vol. 8, No. 1, 18-20, 1998.
doi:10.1109/75.650975