Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 41 > pp. 73-84


By A. Wang, Q. M. Marashdeh, F. L. Teixeira, and L.-S. Fan

Full Article PDF (1,884 KB)

Spatial resolution represents akey performance aspect in electrical capacitance volume tomography (ECVT). Factors affecting the resolution include the ``soft-field'' nature of ECVT, the number of capacitance channels used, the ill-conditioned nature of the imaging reconstruction problem, and the signal-to-noise ratio of the measurement apparatus. In this study, the effect of choosing different numbers of capacitance plates on the performance of ECVT is investigated. Specifically, two ECVT sensors with 12 and 24 capacitance channels but covering equal volumes of a cylinder are used to examine the resulting impact on the image resolution.

A. Wang, Q. M. Marashdeh, F. L. Teixeira, and L.-S. Fan, "Electrical Capacitance Volume Tomography: a Comparison Between 12- and 24-Channels Sensor Systems," Progress In Electromagnetics Research M, Vol. 41, 73-84, 2015.

1. Wang, H. and W. Yang, "Scale-up of an electrical capacitance tomography sensor for imaging pharmaceutical fluidized beds and validation by computational fluid dynamics," Meas. Sci. Technol., Vol. 22, No. 10, 104015, 2011.

2. Yang, D. Y., B. Zhou, C. L. Xu, and S. M. Wang, "Thick-wall electrical capacitance tomography and its application in dense-phase pneumatic conveying under high pressure," IET Image Proc., Vol. 5, No. 5, 513-522, 2011.

3. Rimpiläinen, V., S. Poutiainen, L. M. Heikkinen, T. Savolainen, M. Vauhkonen, and J. Ketolainen, "Electrical capacitance tomography as a monitoring tool for high-shear mixing and granulation," Chem. Eng. Sci., Vol. 66, No. 18, 4090-4100, 2011.

4. Chandrasekera, T. C., A. Wang, D. J. Holland, Q. Marashdeh, M. Pore, F. Wang, A. J. Sederman, L. S. Fan, L. F. Gladden, and J. S. Dennis, "A comparison of magnetic resonance imaging and electrical capacitance tomography: An air jet through a bed of particles," Powder Technol., Vol. 227, 86-95, 2012.

5. Warsito, W., Q. Marashdeh, and L. S. Fan, "Electrical capacitance volume tomography," IEEE Sensors J., Vol. 7, No. 4, 525-535, 2007.

6. Wang, F., Q. Marashdeh, L. S. Fan, and W. Warsito, "Electrical capacitance volume tomography: Design and applications," Sensors, Vol. 10, 1890-1917, 2010.

7. Wang, F., Q. Marashdeh, A. Wang, and L. S. Fan, "Electrical capacitance volume tomography imaging of three-dimensional flow structures and solids concentration distributions in a riser and a bend of a gas-solid circulating fluidized bed," Ind. & Eng. Chem. Res., Vol. 51, 10968-10976, 2012.

8. Pore, M., T. C. Chandrasekera, D. J. Holland, A. Wang, F. Wang, Q. Marashdeh, M. D. Mantle, A. J. Sederman, L.-S. Fan, L. F. Gladdena, and J. S. Dennis, "Magnetic resonance studies of jets in a gas-solid fluidised bed," Particuology, Vol. 10, 161-169, 2012.

9. Marashdeh, Q., W. Warsito, L.-S. Fan, and F. L. Teixeira, "Non-linear image reconstruction technique for ECT using a combined neural network approach," Meas. Sci. Technol., Vol. 17, No. 8, 2097-2103, 2006.

10. Soleimani, M., P. K. Yalavarthy, and H. Dehghani, "Helmholtz-type regularization method for permittivity reconstruction using experimental phantom data of electrical capacitance tomography," IEEE Tran. Instr. Meas., Vol. 59, No. 1, 78-83, 2010.

11. Lei, J., S. Liu, H. H. Guo, Z. H. Li, J. T. Li, and Z. X. Han, "An image reconstruction algorithm based on the semiparametric model for electrical capacitance tomography," Comp. Math. Appl., Vol. 61, No. 9, 2843-2853, 2011.

12. Cao, Z., L. Xu, and H.Wang, "Image reconstruction technique of electrical capacitance tomography for low-contrast dielectrics using Calderon’s method," Meas. Sci. Technol., Vol. 20, No. 10, 2009.

13. Yang, W., "Design of electrical capacitance tomography sensors," Meas. Sci. Technol., Vol. 21, No. 4, 042001, 2010.

14. Peng, L., J. Ye, G. Lu, and W. Yang, "Evaluation of effect of number of electrodes in ECT sensors on image quality," IEEE Sensors J., Vol. 12, No. 5, 1554-1565, 2012.

15. Warsito, W. and L. S. Fan, "Neural network multi-criteria optimization image reconstruction technique (NN-MOIRT) for linear and non-linear process tomography," Chem. Eng. Proc., Vol. 42, 663-674, 2003.

16. Marashdeh, Q. and F. L. Teixeira, "Sensitivity matrix calculation for fast electrical capacitance tomography (ECT) of flow systems," IEEE Trans. Magn., Vol. 40, No. 2, 1204-1207, 2004.

17. Marashdeh, Q., W. Warsito, L.-S. Fan, and F. L. Teixeira, "Nonlinear forward problem solution for electrical capacitance tomography using feed forward neural network," IEEE Sensors J., Vol. 6, No. 2, 441-449, 2006.

18. Yates, J. G., D. J. Cheesman, and Y. A. Sergeev, "Experimental observations of voidage distribution around bubbles in a fluidized bed," Chem. Eng. Sci., Vol. 49, 1885-1895, 1994.

19. Bhaga, D. and M. E. Weber, "Bubbles in viscous liquids: Shapes, wakes and velocities," J. Fluid Mech., Vol. 105, 61-85, 1981.

20. Marashdeh, Q. M., F. L. Teixeira, and L.-S. Fan, "Adaptive electrical capacitance volume tomography," IEEE Sensors J., Vol. 14, No. 4, 1253-1259, 2014.

21. Zeeshan, F., L. Teixeira, and Q. Marashdeh, "Sensitivity map computation in adaptive electrical capacitance volume tomography with multielectrode excitations," Electron. Lett., Vol. 51, No. 4, 334-336, 2015.

22. Marashdeh, Q., W. Warsito, L.-S. Fan, and F. L. Teixeira, "A multimodal tomography system based on ECT sensors," IEEE Sensors J., Vol. 7, No. 3, 426-433, 2007.

23. Marashdeh, Q., W. Warsito, L.-S. Fan, and F. L. Teixeira, "Dual imaging modality of granular flow based on ECT sensors," Granular Matter, Vol. 10, No. 2, 75-80, 2008.

© Copyright 2010 EMW Publishing. All Rights Reserved