Vol. 45
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-01-05
On the Feasibility of Assessing Burn Wound Healing Without Removal of Dressings Using Radiometric Millimetre-Wave Sensing
By
Progress In Electromagnetics Research M, Vol. 45, 173-183, 2016
Abstract
The authors present transmission data, taken at Ka (36 GHz) and W (95 GHz) bands in the millimetre-wave region of the electromagnetic spectrum, for various dressing materials used in the treatment and management of burn wounds. The results show that such materials are highly transparent (typically > 90% transmission) and, in their dry state, will permit the sensing of the surface of the skin through the thick layers (> 2 cm) of different dressings typically applied in medical treatment of burn wounds. Furthermore, the authors present emissivity data, taken at the same frequency bands, for different regions of human skin on the arm and for samples of chicken flesh with and without skin and before and after localised heat treatment. In vivo human skin has a lower emissivity than chicken flesh samples, 0.3-0.5 compared to 0.6-0.7. However, changes in surface emissivity of chicken samples caused by the short-term application of heat are observable through dressing materials, indicating the feasibility of a millimetre-wave imaging to map changes in tissue emissivity for monitoring the state of burn wounds (and possibly other wounds) non-invasively and without necessitating the removal of the wound dressings.
Citation
Stuart William Harmer, Sergiy Shylo, Mamta Shah, Nicholas John Bowring, and Amani Yousef Owda, "On the Feasibility of Assessing Burn Wound Healing Without Removal of Dressings Using Radiometric Millimetre-Wave Sensing," Progress In Electromagnetics Research M, Vol. 45, 173-183, 2016.
doi:10.2528/PIERM15110503
References

1. The Child Accident Prevention Trust (CAPT) "The costs of burns," Working Together for Safer Children, Aug. 2013, Available: http://www.makingthelink.net/tools/costs-child-accidents/costsburns, Accessed: Sep. 12, 2015.

2. Arbab, M. H., T. C. Dickey, D. P. Winebrenner, A. Chen, M. B. Klein, and P. D. Mourad, "Terahertz reflectometry of burn wounds in a rat model," Biomedical Optics Express, Vol. 2, No. 8, 2339-2347, Aug. 2011.
doi:10.1364/BOE.2.002339

3. Smulders, P. F. M., "Analysis of human skin tissue by millimeter-wave reflectometry," Skin Research and Technology, Vol. 19, No. 1, 209-216, Apr. 2012, DOI: 10.1111/j.1600-0846.2012.00629.x.
doi:10.1111/j.1600-0846.2012.00629.x

4. Kharkovsky, S., M. T. Ghasr, M. A. Abou-Khousa, and R. Zoughi, "Near-field microwave and mm-wave noninvasive diagnosis of human skin," International Workshop on Medical Measurements and Applications, 5-7, Italy, May 2009.

5. Siegel, P. H., "Terahertz technology in biology and medicine," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 10, 2438-2447, Oct. 2004.
doi:10.1109/TMTT.2004.835916

6. Essen, H., J. M. Essen, D. Nuessler, A. Hommes, C. Krebs, N. Fatihi, and T. Buzug, "Monitoring of wound healing by millimetre wave imaging," 35th International Conference on Infrared, Millimeter, and Terahertz Waves, 1-2, Sep. 2010.
doi:10.1109/ICIMW.2010.5612311

7. Siegel, P. H., "Microwave symposium digest," IEEE MTT-S International, Vol. 3, 1575-1578, Jun. 2004, ISSN: 0149-645X, Print ISBN: 0-7803-8331-1 INSPEC, Accession Number: 8058048, DOI:10.1109/MWSYM.2004.1338880.

8. Bardati, F., V. J. Brown, M. P. Ross, and P. Tognolatti, "Microwave radiometry for medical thermal imaging: Theory and experiment," IEEE MTT-S International in Microwave Symposium Digest, Vol. 3, 1287-1290, Jun. 1992, ISSN: 0149-645X, Print ISBN: 0-7803-0611-2 INSPEC, Accession Number: 4296960, DOI: 10.1109/MWSYM.

9. Dziewonski, M., "Planimetry of thermograms in diagnosis of burn wounds," Scientific Research of the Institute of Mathematics and Computer Science, Vol. 8, No. 1, 33-38, 2009.

10. Federici, J. F., B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, "THz imaging and sensing for security applications - Explosives, weapons and drugs," Semiconductor Science and Technology, Vol. 20, No. 7, S266-S280, Jun. 2005.
doi:10.1088/0268-1242/20/7/018

11. Appleby, R. and R. N. Anderton, "Millimeter-wave and submillimeter-wave imaging for security and surveillance," IEEE Publisher, Vol. 95, No. 8, 1683-1690, Aug. 2007, ISSN: 0018-9219 INSPEC, Accession Number: 9633436, DOI:10.1109/JPROC.2007.898832.

12. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 9, 1581-1592, Sep. 2001.
doi:10.1109/22.942570

13. Oka, S., H. Togo, N. Kukutsu, and T. Nagatsuma, "Latest trends in millimeter-wave imaging technology," Progress In Electromagnetics Research Letters, Vol. 1, 197-204, 2008.
doi:10.2528/PIERL07120604

14. Nashashibi, A. Y., K. Sarabandi, P. Frantzis, R. D. De Roo, and F. T. Ulaby, "An ultrafast wide-band millimeter-wave (mmw) polarimetric radar for remote sensing applications," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 8, 1777-1786, Aug. 2002, ISSN: 0196-2892 INSPEC, Accession Number: 7416289, DOI:10.1109/TGRS.2002.802462.
doi:10.1109/TGRS.2002.802462

15. Appleby, R., R. N. Anderton, N. H. Thomson, and J. W. Jack, "The design of a real-time 94-GHz passive millimetre-wave imager for helicopter operations," Passive Millimetre-wave and Terahertz Imaging and Technology, Vol. 5619, 38-46, Dec. 2004, DOI:10.1117/12.581336, Available: http://dx.doi.org/10.1117/12.581336, Accessed: Sep. 13, 2015.
doi:10.1117/12.581336

16. Coward, P. and R. Appleby, "Comparison of passive millimeter-wave and IR imagery in a nautical environment," Passive Millimeter-wave Imaging Technology XII, Vol. 7309, No. 730904, Apr. 2009, DOI:10.1117/12.819852, Available: http://dx.doi.org/10.1117/12.819852, Accessed: Sep. 13, 2015.

17. Hasch, J., E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmid, "Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 3, 845-860, Mar. 2012, ISSN: 0018-9480 INSPEC, Accession Number: 12571080, DOI:10.1109/TMTT.2011.2178427.
doi:10.1109/TMTT.2011.2178427

18. Wengerl, J., "Automotive mm-wave radar: Status and trends in system design and technology," Automotive Radar and Navigation Techniques, IEE Colloquium. IET, Ref. No. 1998/230, 1-7, 1998, INSPEC, Accession Number: 5877493, DOI:10.1049/ic:19980188.

19. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Communications Magazine, Vol. 49, No. 6, 101-107, Jun. 2011, ISSN: 0163-6804 INSPEC, Accession Number: 12036181, DOI:10.1109/MCOM.2011.5783993.
doi:10.1109/MCOM.2011.5783993

20. Kemp, M. C., "Millimetre wave and terahertz technology for the detection of concealed threats: A review," Optics and Photonics for Counterterrorism and Crime Fighting II, Vol. 6402, Sep. 2006, DOI:10.1117/12.692612, Available: http://dx.doi.org/10.1117/12.692612, Accessed: Sep. 14, 2015.

21. Lamb, J. W., "Miscellaneous data on materials for millimetre and submillimetre optics," International Journal of Infrared and Millimeter Waves, Vol. 17, No. 12, 1997-2034, Dec. 1996.
doi:10.1007/BF02069487

22. Alekseev, S. I. and M. C. Ziskin, "Human skin permittivity determined by millimeter wave reflection measurements," Bioelectromagnetics, Vol. 28, No. 5, 331-339, Jul. 2007, DOI: 10.1002/bem.20308, Available: http://onlinelibrary.wiley.com/, Accessed: Sep. 14, 2015.
doi:10.1002/bem.20308

23. Alabaster, C. M., "The microwave properties of tissue and other lossy dielectrics,", PhD Thesis, Cranfield University, Mar. 2004.

24. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792-2800, Dec. 2008.
doi:10.1109/TBME.2008.2002130

25. Harmer, S. W., N. Bowring, D. Andrews, N. D. Rezgui, M. Southgate, and S. Smith, "A review of nonimaging stand-off concealed threat detection with millimeter-wave radar," IEEE Microwave Magazine, Vol. 13, No. 1, 160-167, Feb. 2012, ISSN: 1527-3342 INSPEC, Accession Number: 12479283, DOI:10.1109/MMM.2011.2174125.
doi:10.1109/MMM.2011.2174125

26. Bardati, F. and D. Solimini, "Radiometric sensing of biological layered media," Radio Science, Vol. 18, No. 6, 1393-1401, Dec. 1983, DOI: 10.1029/RS018i006p01393.
doi:10.1029/RS018i006p01393

27. Harmer, S. W., N. Rezgui, N. Bowring, Z. Luklinska, and G. Ren, "Determination of the complex permittivity of textiles and leather in the 14-40 GHz millimetre-wave band using a free-wave transmittance only method," IET Microwaves, Antennas & Propagation, Vol. 2, No. 6, 606-614, Sep. 2008, ISSN: 1751-8725 INSPEC, Accession Number: 10158942, DOI:10.1049/ietmap:20070235.
doi:10.1049/iet-map:20070235

28. Aminzadeh, R., M. Saviz, and A. A. Shishegar, "Dielectric properties estimation of normal and malignant skin tissues ats millimeter-wave frequencies using effective medium theory," 22nd Iranian Conference on Electrical Engineering (ICEE), 2014, 1657-1661, IEEE, May 2014.
doi:10.1109/IranianCEE.2014.6999804

29. Olga, B. L., Y. Nikawa, W. Snyder, J. Lin, and K. Mizuno, "Novel microwave and millimeter-wave biomedical applications," 4th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services, 1999, Vol. 1, 186-193, IEEE, Oct. 1999.

30. Tamyis, N. M., D. K. Ghodgaonkar, M. N. Taib, and W. T. Wui, "Dielectric properties of human skin in vivo in the frequency range 20-38 GHz for 42 healthy volunteers," Proc. of the 28th URSI General Assembly, 2005.