PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 46 > pp. 165-172

SURFACE-PLASMON-POLARITONS AT THE INTERFACE OF NANOSTRUCTURED METAMATERIALS

By T. Gric

Full Article PDF (830 KB)

Abstract:
The rigorous modeling and analysis of surface waves at the boundary of two metamaterials are presented. The nature of the phenomenon of the surface-plasmon-polaritons and the influence of various parameters on it are investigated. We have analyzed the properties of structures incorporating nanostructured metamaterials. Surface-plasmon-polaritons at the interface of such metamaterials are studied. We demonstrate the ways to control the properties of the surface waves. Each metamaterial comprises alternating metal and dielectric layers. We analyze the dependence of the dispersion characteristics on the materials employed in metal-dielectric compound. The consistency of the dispersion diagrams and effective permittivity is studied. The Drude model is introduced in the metal dispersion in order to take into account the effects of the structure on dielectric properties.

Citation:
T. Gric, "Surface-Plasmon-Polaritons at the Interface of Nanostructured Metamaterials," Progress In Electromagnetics Research M, Vol. 46, 165-172, 2016.
doi:10.2528/PIERM15121605

References:
1. Yan, H., X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, "Tunable infrared plasmonic devices using graphene/insulator stacks," Nat. Nanotechnol., Vol. 7, 330, 2012.
doi:10.1038/nnano.2012.59

2. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Lett., Vol. 16, 80, 2016.
doi:10.1021/acs.nanolett.5b02901

3. Politano, A. and G. Chiarello, "Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices," Nanoscale, Vol. 5, 8215, 2013.
doi:10.1039/c3nr02027d

4. Radkovskaya, A., E. Tatartschuk, O. Sydoruk, E. Shamonina, C. J. Stevens, D. J. Edwards, and L. Solymar, "Surface waves at an interface of two metamaterial structures with interelement coupling," Phys. Rev. B, Vol. 82, 045430, 2010.
doi:10.1103/PhysRevB.82.045430

5. Echtermeyer, T. J., S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, "Surface plasmon polariton graphene photodetectors," Nano Lett., Vol. 16, 8, 2015.
doi:10.1021/acs.nanolett.5b02051

6. Politano, A. and G. Chiarello, "The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films," Prog. Surf. Sci., Vol. 90, 144, 2015.
doi:10.1016/j.progsurf.2014.12.002

7. Nechaev, I. A., I. Aguilera, V. De Renzi, A. di Bona, A. Lodi Rizzini, A. M. Mio, G. Nicotra, A. Politano, S. Scalese, Z. S. Aliev, M. B. Babanly, C. Friedrich, S. Blügel, and E. V. Chulkov, "Quasiparticle spectrum and plasmonic excitations in the topological insulator Sb2Te3," Phys. Rev. B, Vol. 91, 245123, 2015.
doi:10.1103/PhysRevB.91.245123

8. Politano, A., "Interplay of structural and temperature effects on plasmonic excitations at noble-metal interfaces," Philos. Mag., Vol. 92, 768, 2012.
doi:10.1080/14786435.2011.634846

9. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, 847, 2004.
doi:10.1126/science.1098999

10. Poddubny, A., I. Iorsh, P. Belov, and Y. Kivshar, "Hyperbolic metamaterials," Nat. Photon., Vol. 7, 948, 2013.
doi:10.1038/nphoton.2013.243

11. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247, 2006.
doi:10.1364/OE.14.008247

12. Fang, A., T. Koschny, and C. M. Soukoulis, "Optical anisotropic metamaterials: negative refraction and focusing," Phys. Rev. B, Vol. 79, 245127, 2009.
doi:10.1103/PhysRevB.79.245127

13. García-Chocano, V. M., J. Christensen, and J. Sa’nchez-Dehesa, "Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics," Phys. Rev. Lett., Vol. 112, 144301, 2014.
doi:10.1103/PhysRevLett.112.144301

14. Liu, Z. W., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368

15. Lu, D., J. J. Kan, E. E. Fullerton, and Z. W. Liu, "Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials," Nat. Nanotech., Vol. 9, 48, 2014.
doi:10.1038/nnano.2013.276

16. Ramakrishna, S. A. and J. B. Pendry, "Optical gain removes absorption and improves resolution in a near-field lens," Phys. Rev. B, Vol. 67, 201101, 2003.
doi:10.1103/PhysRevB.67.201101

17. Belov, P. A. and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B, Vol. 73, 113110, 2006.
doi:10.1103/PhysRevB.73.113110

18. Li, X., S. He, and Y. Jin, "Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies," Phys. Rev. B, Vol. 75, 045103, 2007.

19. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368

20. Xiong, Y., Z. Liu, and X. Zhang, "Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers," Appl. Phys. Lett., Vol. 93, 111116, 2008.
doi:10.1063/1.2985898

21. Engheta, N., "Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials," Science, Vol. 317, 1698, 2007.
doi:10.1126/science.1133268

22. Hoffman, A. J., L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nature Mater., Vol. 6, 946, 2007.
doi:10.1038/nmat2033

23. Smith, D. R. and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett., Vol. 90, 077405, 2003.
doi:10.1103/PhysRevLett.90.077405

24. Scalora, M., G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. De Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, "Negative refraction and subwavelength focusing in the visible range using transparent metallo-dielectric stacks," Opt. Express, Vol. 15, 508, 2007.
doi:10.1364/OE.15.000508

25. Liu, Y., G. Bartal, and X. Zhang, "All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region," Opt. Express, Vol. 16, 15439, 2008.
doi:10.1364/OE.16.015439

26. Song, Z. and W. Jian, "Splitting the surface wave in metal/dielectric nanostructures," Chinese Phys. B, Vol. 20, 067901, 2011.
doi:10.1088/1674-1056/20/6/067901

27. Yeshchenko, O., I. Bondarchuk, S. Malynych, Y. Galabura, G. Chumanov, and I. Luzinov, "Surface plasmon modes of sandwich-like metal-dielectric nanostructures," Plasmonics, Vol. 10, 655, 2015.
doi:10.1007/s11468-014-9851-8

28. Dong, Z., M. Bosman, D. Zhu, X. M. Goh, and J. K. Yang, "Fabrication of suspended metal-dielectric-metal plasmonic nanostructures," Nanotechnology, Vol. 25, 135303, 2014.
doi:10.1088/0957-4484/25/13/135303

29. Agranovich, V. M. and V. E. Kravtsov, "Notes on crystal optics of superlattices," Solid State Commun., Vol. 55, 85, 1985.
doi:10.1016/0038-1098(85)91111-1

30. Iorsh, I., A. Orlov, P. Belov, and Y. Kivshar, "Interface modes in nanostructured metal-dielectric metamaterials," Appl. Phys. Lett., Vol. 99, 151914, 2011.
doi:10.1063/1.3643152

31. Raether, H., Surface Polaritons, in V. M. Agranovich, D. L. Mills, (Eds.), Surface Plasmons, Springer, New York, 1988.

32. Alu, A., N. Engheta, and R. W. Ziolkowski, "FDTD analysis of the tunneling and growing exponential in a pair of epsilon-negative and mu-negative slabs," Phys. Rev. E, Vol. 74, 016604, 2006.
doi:10.1103/PhysRevE.74.016604

33. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370, 1972.
doi:10.1103/PhysRevB.6.4370

34. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying subdiffraction-limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368

35. Kim, J., V. P. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, "Improving the radiative decay rate for dye molecules with hyperbolic metamaterials," Opt. Express, Vol. 20, 8100-8116, 2012.
doi:10.1364/OE.20.008100

36. Tumkur, T., G. Zhu, P. Black, Yu. A. Barnakov, C. E. Bonner, and M. A. Noginov, "Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial," Appl. Phys. Lett., Vol. 99, 151115, 2011.
doi:10.1063/1.3631723

37. Tumkur, T. U., L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, "Control of absorption with hyperbolic metamaterials," Appl. Phys. Lett., Vol. 100, 161103, 2012.
doi:10.1063/1.4703931

38. Rho, J., Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nature Commun., Vol. 1, 143, 2010.
doi:10.1038/ncomms1148


© Copyright 2010 EMW Publishing. All Rights Reserved