Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 46 > pp. 165-172


By T. Gric

Full Article PDF (830 KB)

The rigorous modeling and analysis of surface waves at the boundary of two metamaterials are presented. The nature of the phenomenon of the surface-plasmon-polaritons and the influence of various parameters on it are investigated. We have analyzed the properties of structures incorporating nanostructured metamaterials. Surface-plasmon-polaritons at the interface of such metamaterials are studied. We demonstrate the ways to control the properties of the surface waves. Each metamaterial comprises alternating metal and dielectric layers. We analyze the dependence of the dispersion characteristics on the materials employed in metal-dielectric compound. The consistency of the dispersion diagrams and effective permittivity is studied. The Drude model is introduced in the metal dispersion in order to take into account the effects of the structure on dielectric properties.

T. Gric, "Surface-Plasmon-Polaritons at the Interface of Nanostructured Metamaterials," Progress In Electromagnetics Research M, Vol. 46, 165-172, 2016.

1. Yan, H., X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, "Tunable infrared plasmonic devices using graphene/insulator stacks," Nat. Nanotechnol., Vol. 7, 330, 2012.

2. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Lett., Vol. 16, 80, 2016.

3. Politano, A. and G. Chiarello, "Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices," Nanoscale, Vol. 5, 8215, 2013.

4. Radkovskaya, A., E. Tatartschuk, O. Sydoruk, E. Shamonina, C. J. Stevens, D. J. Edwards, and L. Solymar, "Surface waves at an interface of two metamaterial structures with interelement coupling," Phys. Rev. B, Vol. 82, 045430, 2010.

5. Echtermeyer, T. J., S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, "Surface plasmon polariton graphene photodetectors," Nano Lett., Vol. 16, 8, 2015.

6. Politano, A. and G. Chiarello, "The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films," Prog. Surf. Sci., Vol. 90, 144, 2015.

7. Nechaev, I. A., I. Aguilera, V. De Renzi, A. di Bona, A. Lodi Rizzini, A. M. Mio, G. Nicotra, A. Politano, S. Scalese, Z. S. Aliev, M. B. Babanly, C. Friedrich, S. Blügel, and E. V. Chulkov, "Quasiparticle spectrum and plasmonic excitations in the topological insulator Sb2Te3," Phys. Rev. B, Vol. 91, 245123, 2015.

8. Politano, A., "Interplay of structural and temperature effects on plasmonic excitations at noble-metal interfaces," Philos. Mag., Vol. 92, 768, 2012.

9. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, 847, 2004.

10. Poddubny, A., I. Iorsh, P. Belov, and Y. Kivshar, "Hyperbolic metamaterials," Nat. Photon., Vol. 7, 948, 2013.

11. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247, 2006.

12. Fang, A., T. Koschny, and C. M. Soukoulis, "Optical anisotropic metamaterials: negative refraction and focusing," Phys. Rev. B, Vol. 79, 245127, 2009.

13. García-Chocano, V. M., J. Christensen, and J. Sa’nchez-Dehesa, "Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics," Phys. Rev. Lett., Vol. 112, 144301, 2014.

14. Liu, Z. W., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.

15. Lu, D., J. J. Kan, E. E. Fullerton, and Z. W. Liu, "Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials," Nat. Nanotech., Vol. 9, 48, 2014.

16. Ramakrishna, S. A. and J. B. Pendry, "Optical gain removes absorption and improves resolution in a near-field lens," Phys. Rev. B, Vol. 67, 201101, 2003.

17. Belov, P. A. and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B, Vol. 73, 113110, 2006.

18. Li, X., S. He, and Y. Jin, "Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies," Phys. Rev. B, Vol. 75, 045103, 2007.

19. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.

20. Xiong, Y., Z. Liu, and X. Zhang, "Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers," Appl. Phys. Lett., Vol. 93, 111116, 2008.

21. Engheta, N., "Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials," Science, Vol. 317, 1698, 2007.

22. Hoffman, A. J., L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nature Mater., Vol. 6, 946, 2007.

23. Smith, D. R. and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett., Vol. 90, 077405, 2003.

24. Scalora, M., G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. De Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, "Negative refraction and subwavelength focusing in the visible range using transparent metallo-dielectric stacks," Opt. Express, Vol. 15, 508, 2007.

25. Liu, Y., G. Bartal, and X. Zhang, "All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region," Opt. Express, Vol. 16, 15439, 2008.

26. Song, Z. and W. Jian, "Splitting the surface wave in metal/dielectric nanostructures," Chinese Phys. B, Vol. 20, 067901, 2011.

27. Yeshchenko, O., I. Bondarchuk, S. Malynych, Y. Galabura, G. Chumanov, and I. Luzinov, "Surface plasmon modes of sandwich-like metal-dielectric nanostructures," Plasmonics, Vol. 10, 655, 2015.

28. Dong, Z., M. Bosman, D. Zhu, X. M. Goh, and J. K. Yang, "Fabrication of suspended metal-dielectric-metal plasmonic nanostructures," Nanotechnology, Vol. 25, 135303, 2014.

29. Agranovich, V. M. and V. E. Kravtsov, "Notes on crystal optics of superlattices," Solid State Commun., Vol. 55, 85, 1985.

30. Iorsh, I., A. Orlov, P. Belov, and Y. Kivshar, "Interface modes in nanostructured metal-dielectric metamaterials," Appl. Phys. Lett., Vol. 99, 151914, 2011.

31. Raether, H., Surface Polaritons, in V. M. Agranovich, D. L. Mills, (Eds.), Surface Plasmons, Springer, New York, 1988.

32. Alu, A., N. Engheta, and R. W. Ziolkowski, "FDTD analysis of the tunneling and growing exponential in a pair of epsilon-negative and mu-negative slabs," Phys. Rev. E, Vol. 74, 016604, 2006.

33. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370, 1972.

34. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying subdiffraction-limited objects," Science, Vol. 315, 1686, 2007.

35. Kim, J., V. P. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, "Improving the radiative decay rate for dye molecules with hyperbolic metamaterials," Opt. Express, Vol. 20, 8100-8116, 2012.

36. Tumkur, T., G. Zhu, P. Black, Yu. A. Barnakov, C. E. Bonner, and M. A. Noginov, "Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial," Appl. Phys. Lett., Vol. 99, 151115, 2011.

37. Tumkur, T. U., L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, "Control of absorption with hyperbolic metamaterials," Appl. Phys. Lett., Vol. 100, 161103, 2012.

38. Rho, J., Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nature Commun., Vol. 1, 143, 2010.

© Copyright 2010 EMW Publishing. All Rights Reserved