PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 51 > pp. 33-50

CHARACTERIZATION OF LINEAR ELECTROMAGNETIC OBSERVABLES IN STOCHASTIC FIELD-TO-WIRE COUPLINGS

By O. O. Sy, M. C. van Beurden, and B. L. Michielsen

Full Article PDF (326 KB)

Abstract:
This article presents a method to characterize stochastic observables defined by induced surface currents and fields in electromagnetic interactions with uncertain configurations. As the covariance operators of the stochastic distributions and fields are not compact, a strict Karhunen-Loeve (KL) approach is not possible. Instead, we apply a point-spectrum regularization by expanding the stochastic quantities on a finite-element-like basis. The coefficients of the KL expansion are approximated analytically in a polynomial-chaos (PC) expansion. The novelty of our approach resides in its ability to handle multiple PC expansions simultaneously and determine the orders of the KL and PC expansions adaptively. Thismethod is illustrated through the example of the voltage induced at the port of a random thin-wire frame illuminated by random plane waves. The results show the accuracy and computational efficiency of the proposed method, which provides a complete characterization of the randomness of the observable.

Citation:
O. O. Sy, M. C. van Beurden, and B. L. Michielsen, "Characterization of Linear Electromagnetic Observables in Stochastic Field-to-Wire Couplings," Progress In Electromagnetics Research M, Vol. 51, 33-50, 2016.
doi:10.2528/PIERM16063006

References:
1. Holland, R. and R. St. John, Statistical Electromagnetics, CRC Press, 1999.

2. Meng, Y. and Y. Shan, "Measurement uncertainty of complex-valued microwave quantities," Progress In Electromagnetics Research, Vol. 136, 421-433, 2013.
doi:10.2528/PIER12112402

3. Michielsen, B. and C. Fiachetti, "Covariance operators, Green functions, and canonical stochastic electromagnetic fields," Radio Science, Vol. 40, No. 5, RS5001.1-RS5001.12, 2005.
doi:10.1029/2004RS003086

4. Lemoine, C., E. Amador, and P. Besnier, "On the K-factor estimation for Rician channel simulated in reverberation chamber," IEEE Trans. on Antennas and Propagation, Vol. 59, No. 3, 1003-1012, 2011.
doi:10.1109/TAP.2010.2103003

5. Phelps, R., M. Krasnicki, R. Rutenbar, L. Carley, and J. Hellums, "Anaconda: Simulation-based synthesis of analog circuits via stochastic pattern search," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 19, No. 6, 703-717, Jun. 2000.
doi:10.1109/43.848091

6. Ghanem, R. and P. Spanos, Stochastic Finite Elements: A Spectral Approach, Dover Publications, 1991.
doi:10.1007/978-1-4612-3094-6

7. Vaessen, J., O. Sy, M. van Beurden, and A. Tijhuis, "Monte-Carlo method applied to a stochastically varying wire above a PEC ground plane," Proceedings EMC Europe Workshop, Paris, 1-5, 2007.

8. Yucel, A. C., H. Bagci, and E. Michielssen, "An adaptive multi-element probabilistic collocation method for statistical EMC/EMI characterization," IEEE Trans. Electromag. Compat., Vol. 55, No. 6, 1154-1168, Dec. 2013.
doi:10.1109/TEMC.2013.2265047

9. Li, P. and L. J. Jiang, "Uncertainty quantification for electromagnetic systems using ASGC and DGTD method," IEEE Trans. Electromag. Compat., Vol. 57, No. 4, 754-763, Aug. 2015.
doi:10.1109/TEMC.2015.2403304

10. Rumsey, V. H., "Reaction concept in electromagnetic theory," Physical Review, Vol. 94, No. 6, 1483-1491, 1954.
doi:10.1103/PhysRev.94.1483

11. Sy, O., M. van Beurden, B. Michielsen, J. Vaessen, and A. Tijhiuis, "Second-order statistics of complex observables in fully stochastic electromagnetic interactions: Applications to EMC," Radio Science, Vol. 45, No. RS4004, Jul. 2010.

12. Papoulis, A., Probability, Random Variables and Stochastic Processes, McGraw-Hill Companies, Feb. 1991.

13. Soize, C. and R. Ghanem, "Physical systems with random uncertainties: Chaos representations with arbitrary probability measure," SIAM J. Sci. Comput., Vol. 26, No. 2, 395-410, 2005.
doi:10.1137/S1064827503424505

14. Debusschere, B. J., H. N. Najm, P. P. P├ębay, O. M. Knio, R. G. Ghanem, and O. P. L. Maitre, "Numerical challenges in the use of polynomial chaos representations for stochastic processes," SIAM J. Sci. Comput., Vol. 26, No. 2, 698-719, 2005.
doi:10.1137/S1064827503427741

15. Haarscher, A., P. De Doncker, and D. Lautru, "Uncertainty propagation and sensitivity analysis in ray-tracing simulations," Progress In Electromagnetics Research M, Vol. 21, 149-161, 2011.
doi:10.2528/PIERM11090103

16. Sy, O., M. van Beurden, B. Michielsen, and A. Tijhiuis, "Semi-intrusive quantification of uncertainties in stochastic electromagnetic interactions: Analysis of a spectral formulation," Proc. International Conference on Electromagnetics in Advanced Applications, ICEAA 2009, 2009.

17. Mrozynski, G., V. Schulz, and H. Garbe, "A benchmark catalog for numerical field calculations with respect to EMC problems," Proc. IEEE International Symposium on Electromagnetic Compatibility, Vol. 1, 497-502, 1999.

18. Tijhuis, A. and Z. Peng, "Marching-on-in-frequency method for solving integral equations in transient electromagnetic scattering," IEE Proc. H, Microwaves, Ant. Prop., Vol. 138, No. 4, 347-355, Aug. 1991.
doi:10.1049/ip-h-2.1991.0057

19. Champagne II, N. J., J. T.Williams, and D. R. Wilton, "The use of curved segments for numerically modeling thin wire antennas and scatterers," IEEE Trans. Ant. Prop., Vol. 40, No. 6, 682-689, 1992.
doi:10.1109/8.144603

20. Tesche, F. M., "Comparison of the transmission line and scattering models for computing the NEMP response of overhead cables," IEEE Trans. Electromagn. Compat., Vol. 34, No. 2, 93-99, 1992.
doi:10.1109/15.135621

21. Li, P., Y. Shi, L. J. Jiang, and H. Bagci, "Transient analysis of lumped circuit networks-loaded thin wires by dgtd method," IEEE Trans. Ant. Prop.,, Vol. 64, No. 6, 2358-2369, Jun. 2016.
doi:10.1109/TAP.2016.2543803

22. Rudin, W., Functional Analysis, 2nd Ed., ser. International Series in Pure and Applied Mathematics, McGraw-Hill Inc., New York, 1991.

23. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ninth Dover printing, tenth GPO printing ed., Dover, New York, 1964.

24. Walters, R. W., "Towards stochastic fluid mechanics via polynomial chaos," 41st AIAA Aerospace Sciences Meeting and Exhibit, Vol. AIAA-2003-0413, 2003.

25. Eadie, W. T., D. Drijard, and F. E. James, Statistical Methods in Experimental Physics, North-Holland Pub. Co., 1971.

26. Gerstner, T. and M. Griebel, "Numerical integration using sparse grids," Numerical Algorithms, Vol. 18, No. 3, 209-232, 1998.
doi:10.1023/A:1019129717644

27. Golub, G. and C. Van Loan, Matrix Computations, ser. J. Hopkins Studies Mathematical Sciences, Johns Hopkins University Press, 1996.

28. Xiu, D. and G. E. Karniadakis, "The Wiener-Askey polynomial chaos for stochastic differential equations," SIAM J. Sci. Comput., Vol. 24, No. 2, 2002.
doi:10.1137/S1064827501387826

29. Steinberg, B. Z., L. B. Felsen, and E. Heyman, "Phase-space beam summation for time-harmonic radiation from large apertures," J. Opt. Soc. Am. A, Vol. 8, No. 1, 41-59, Jan. 1991.
doi:10.1364/JOSAA.8.000041


© Copyright 2010 EMW Publishing. All Rights Reserved