PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 52 > pp. 79-87

EMI SHIELDING EFFECTIVENESS OF COMPOSITES BASED ON BARIUM FERRITE, PANI, AND MWCNT

By M. H. Zahari, B. H. Guan, E. M. Cheng, M. F. Che Mansor, and K. C. Lee

Full Article PDF (1,029 KB)

Abstract:
An electromagnetic interference (EMI) shielding material based on the composite of BaFe12O19, polyaniline (PANI) and multi-walled carbon nanotube (MWCNT) was proposed. The constituents of the composite were brought together through mechanical mixing and the in-situ polymerization of aniline on the BaFe12O19 and MWCNT surfaces. A series of composite with different MWCNT wt% loadings (0, 5, 10, 15, 20 and 25wt%) was prepared, and its effect on the EMI shielding performance was investigated. X-ray diffraction analysis was performed on all synthesized composites to confirm the phase formations. FESEM micrographs reveal the PANI particle formation on both BaFe12O19 and MWCNT surfaces. Electromagnetic measurements were done by using a rectangular waveguide connected to a network analyser to obtain the permeability, μr, permittivity, εr, and shielding effectiveness (SEA and SER). The increase in the MWCNT loading results in the enhancement of the composite's shielding performance to a certain limit. Optimum EMI shielding performance are shown by sample PBM4 (20wt% MWCNT) with SER and SEA values of 5.14 dB at 8.2 GHz and 36.41 dB at 12.4 GHz, respectively. influence of different MWCNT loadings (0, 5, 10, 15, 20 and 25wt%) on the EMI shielding performance of a composite consisting of BaFe12O19, polyaniline (PANI) and multi-walled carbon nanotube (MWCNT) were investigated.

Citation:
M. H. Zahari, B. H. Guan, E. M. Cheng, M. F. Che Mansor, and K. C. Lee, "EMI Shielding Effectiveness of Composites Based on Barium Ferrite, PANI, and MWCNT," Progress In Electromagnetics Research M, Vol. 52, 79-87, 2016.
doi:10.2528/PIERM16080701

References:
1. Tong, X. C., Advanced Materials and Design for Electromagnetic Interference Shielding, Taylor & Francis, 2008.
doi:10.1201/9781420073591

2. Hibst, H., "Hexagonal ferrites from melts and aqueous solutions, magnetic recording materials," Angewandte Chemie International Edition in English, Vol. 21, 270-282, 1982.
doi:10.1002/anie.198202701

3. Lotgering, F. K., P. R. Locher, and R. P. van Stapele, "Anisotropy of hexagonal ferrites with M, W and Y structures containing Fe3+ and Fe2+ as magnetic ions," Journal of Physics and Chemistry of Solids, Vol. 41, 481-487, 1980.
doi:10.1016/0022-3697(80)90178-X

4. Albanese, G., A. Deriu, and S. Rinaldi, "Sublattice magnetization and anisotropy properties of Ba3Co2Fe24O41 hexagonal ferrite," Journal of Physics C: Solid State Physics, Vol. 9, 1313, 1976.
doi:10.1088/0022-3719/9/7/023

5. Xu, P., X. Han, and M. Wang, "Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique," The Journal of Physical Chemistry C, Vol. 111, 5866-5870, 2007.
doi:10.1021/jp068955c

6. Liu, J., P. Liu, X. Zhang, D. Pan, P. Zhang, and M. Zhang, "Synthesis and properties of single domain sphere-shaped barium hexa-ferrite nano powders via an ultrasonic-assisted co-precipitation route," Ultrasonics Sonochemistry, Vol. 23, 46-52, March 2015.
doi:10.1016/j.ultsonch.2014.08.001

7. Saini, P., V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, "Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding," Materials Chemistry and Physics, Vol. 113, 919-926, 2009.
doi:10.1016/j.matchemphys.2008.08.065

8. Duan, Y., L. Shunhua, and G. Hongtao, "Investigation of electrical conductivity and electromagnetic shielding effectiveness of polyaniline composite," Science and Technology of Advanced Materials, Vol. 6, 513-518, 2005.
doi:10.1016/j.stam.2005.01.002

9. Singh, K., A. Ohlan, V. H. Pham, B. R, S. Varshney, J. Jang, S. H. Hur, W. M. Choi, M. Kumar, S. K. Dhawan, B.-S. Kong, and J. S. Chung, "Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution," Nanoscale, Vol. 5, 2411-2420, 2013.
doi:10.1039/c3nr33962a

10. Sharma, B. K., N. Khare, R. Sharma, S. K. Dhawan, V. D. Vankar, and H. C. Gupta, "Dielectric behavior of polyaniline–CNTs composite in microwave region," Composites Science and Technology, Vol. 69, 1932-1935, 2009.
doi:10.1016/j.compscitech.2009.04.012

11. Han, M. and L. Deng, High Frequency Properties of Carbon Nanotubes and Their Electromagnetic Wave Absorption Properties, J. M. Marulanda, Ed., Carbon Nanotubes Applications on Electron Devices, InTech, 2011.

12. Qin, F. and C. Brosseau, "A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles," Journal of Applied Physics, Vol. 111, 061301, 2012.
doi:10.1063/1.3688435

13. Pullar, R. C., "Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics," Progress in Materials Science, Vol. 57, 1191-1334, 2012.
doi:10.1016/j.pmatsci.2012.04.001

14. Huo, J., L. Wang, and H. Yu, "Polymeric nanocomposites for electromagnetic wave absorption," Journal of Materials Science, Vol. 44, 3917-3927, 2009.
doi:10.1007/s10853-009-3561-1

15. Wang, Y., "Research progress on nanostructured radar absorbing materials," Energy and Power Engineering, Vol. 03, 580-584, 2011.
doi:10.4236/epe.2011.34072

16. Tadjarodi, A., H. Kerdari, and M. Imani, "Ba0.69Sr0.17Cd0.07Zn0.07Fe12O19 nanostrucutres/conducting polyaniline nanocomposites; synthesis, characterization and microwave absorption performance," Journal of Alloys and Compounds, Vol. 554, 284-292, 2013.
doi:10.1016/j.jallcom.2012.11.161

17. Fan, Z., G. Luo, Z. Zhang, L. Zhou, and F. Wei, "Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites," Materials Science and Engineering: B, Vol. 132, 85-89, 2006.
doi:10.1016/j.mseb.2006.02.045

18. Dhawan, S. K., K. Singh, A. K. Bakhshi, and A. Ohlan, "Conducting polymer embedded with nanoferrite and titanium dioxide nanoparticles for microwave absorption," Synthetic Metals, Vol. 159, 2259-2262, 2009.
doi:10.1016/j.synthmet.2009.08.031

19. Goldman, A., Modern Ferrite Technology, Springer Science & Business Media, 2006.

20. Bandaru, P. R., "Electrical properties and applications of carbon nanotube structures," Journal of Nanoscience and Nanotechnology, Vol. 7, 1239-1267, 2007.
doi:10.1166/jnn.2007.307

21. Phan, C. H., M. Mariatti, and Y. H. Koh, "Electromagnetic interference shielding performance of epoxy composites filled with multiwalled carbon nanotubes/manganese zinc ferrite hybrid fillers," Journal of Magnetism and Magnetic Materials, Vol. 401, 472-478, 2016.
doi:10.1016/j.jmmm.2015.10.067

22. Wang, Z., G. Wei, and G. L. Zhao, "Enhanced electromagnetic wave shielding effectiveness of Fe doped carbon nanotubes/epoxy composites," Applied Physics Letters, Vol. 103, 183109, 2013.
doi:10.1063/1.4828356

23. Verma, V., J. Kapil, and N. Singh, "Structural, magnetic properties of soft and hard ferrites and their emi shielding application in X-band frequency range," International Journal of Engineering Research & Technology (IJERT), 557-560, 2014.

24. Malek, M. F. B. A., E. M. Cheng, O. Nadiah, H. Nornikman, M. Ahmed, M. Z. A. Abdul Aziz, A. R. Othman, P. J. Soh, A. A. A.-H. Azremi, A. Hasnain, and M. N. Taib, "Rubber tire dust-rice husk pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 117, 449-477, 2011.
doi:10.2528/PIER11040801

25. Stoll, R. L., The Analysis of Eddy Currents, Oxford University Press, 1974.

26. Pry, R. H. and C. P. Bean, "Calculation of the energy loss in magnetic sheet materials using a domain model," Journal of Applied Physics, Vol. 29, 532-533, 1958.
doi:10.1063/1.1723212

27. Li, Y., Y. Huang, S. Qi, L. Niu, Y. Zhang, and Y. Wu, "Preparation, magnetic and electromagnetic properties of polyaniline/strontium ferrite/multiwalled carbon nanotubes composite," Applied Surface Science, Vol. 258, 3659-3666, 2012.
doi:10.1016/j.apsusc.2011.12.001


© Copyright 2010 EMW Publishing. All Rights Reserved