1. Stroke (Cerebrovascular Accident), Hemorrhagic, Discharge Information, [Online], , , Available: http://www.summitmedicalgroup.com/library/adult_care/ac-strokehemorrhagic_dc/.
doi:10.1016/S0140-6736(05)66755-4
2. Feigin, V. L., "Stroke epidemiology in the developing world," The Lancet, Vol. 365, 2160-2161, 2005. Google Scholar
3. The Internet Stroke Center, [Online], , , Available: http://www.strokecenter.org/.
4. Khan, F., I. J. Baguley, and I. D. Cameron, "4: Rehabilitation after traumatic brain injury," Med. J. Aust., Vol. 178, 290-5, Mar. 17, 2003.
doi:10.1109/PROC.1982.12341 Google Scholar
5. Lin, J. C. and M. J. Clarke, "Microwave imaging of cerebral edema," Proceedings of the IEEE, Vol. 70, 523-524, 1982. Google Scholar
6. Haddad, W., J. Chang, T. Rosenbury, G. Dallum, P. Welsh, D. Scott, et al. "Microwave hematoma detector for the rapid assessment of head injuries," Lawrence Livermore National Laboratory Technical Report UCRL-ID, Vol. 137901, 2000. Google Scholar
7. Paulson, C. N., J. T. Chang, C. E. Romero, J.Watson, F. J. Pearce, and N. Levin, "Ultra-wideband radar methods and techniques of medical sensing and imaging," Optics East 2005, 60070L-60070L-12, 2005.
doi:10.1155/2008/254830 Google Scholar
8. Semenov, S. Y. and D. R. Corfield, "Microwave tomography for brain imaging: Feasibility assessment for stroke detection," International Journal of Antennas and Propagation, Vol. 2008, 1-8, 2008. Google Scholar
9. Ireland, D. and M. Bialkowski, "Feasibility study on microwave stroke detection using a realistic phantom and the FDTD method," Asia-Pacific Microwave Conference 2010, 1-4, 2010.
doi:10.1118/1.597290 Google Scholar
10. Zubal, I. G., C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, and P. B. Hoffer, "Computerized three-dimensional segmented human anatomy," Medical Physics, Vol. 21, 299-302, 1994.
doi:10.1088/0266-5611/26/11/115010 Google Scholar
11. Zakaria, A., C. Gilmore, and J. LoVetri, "Finite-element contrast source inversion method for microwave imaging," Inverse Problems, Vol. 26, 115010, 2010.
doi:10.2528/PIERM11082907 Google Scholar
12. Ireland, D. and M. E. Bialkowski, "Microwave head imaging for stroke detection," Progress In Electromagnetics Research M, Vol. 21, 163-175, 2011.
doi:10.1002/mop.25941 Google Scholar
13. Bialkowski, M. and Y. Wang, "UWB cylindrical microwave imaging system employing virtual array antenna concept for background effect removal," Microwave and Optical Technology Letters, Vol. 53, 1100-1104, 2011. Google Scholar
14. Bialkowski, M. E., "Ultra wideband microwave system with novel image reconstruction strategies for breast cancer detection," 2010 European Microwave Conference (EuMC), 537-540, 2010.
doi:10.1109/7260.915627 Google Scholar
15. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, 130-132, 2001.
doi:10.1109/MWSYM.2010.5515064 Google Scholar
16. Bialkowski, M. E., Y. Wang, A. Abu Bakar, and W. C. Khor, "Novel image reconstruction algorithm for a UWB cylindrical microwave imaging system," 2010 IEEE MTT-S International Microwave Symposium Digest (MTT), 477-480, 2010.
doi:10.2528/PIERB12022006 Google Scholar
17. Scapaticci, R., L. Di Donato, I. Catapano, and L. Crocco, "A feasibility study on microwave imaging for brain stroke monitoring," Progress In Electromagnetics Research B, Vol. 40, 305-324, 2012. Google Scholar
18. Jalilvand, M., X. Li, and T. Zwick, "A model approach to the analytical analysis of stroke detection using UWB radar," 2013 7th European Conference on Antennas and Propagation (EuCAP), 1555-1559, 2013. Google Scholar
19. Fhager, A., Y. Yu, T. McKelvey, and M. Persson, "Stroke diagnostics with a microwave helmet," 2013 7th European Conference on Antennas and Propagation (EuCAP), 845-846, 2013.
doi:10.1109/TIM.2013.2277562 Google Scholar
20. Mohammed, B. J., A. M. Abbosh, S. Mustafa, and D. Ireland, "Microwave system for head imaging," IEEE Transactions on Instrumentation and Measurement, Vol. 63, 117-123, 2014. Google Scholar
21. Abbosh, A., "Microwave systems for head imaging: Challenges and recent developments," 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), 2013.
doi:10.1109/LAWP.2013.2255095 Google Scholar
22. Mustafa, S., B. Mohammed, and A. Abbosh, "Novel preprocessing techniques for accurate microwave imaging of human brain," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 460-463, 2013. Google Scholar
23. Mohammed, B., A. Abbosh, and D. Ireland, "Stroke detection based on variations in reflection coefficients of wideband antennas," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-2, 2012.
doi:10.1109/ICEAA.2013.6632455 Google Scholar
24. Mobashsher, A. T., B. Mohammed, A. Abbosh, and S. Mustafa, "Detection and differentiation of brain strokes by comparing the reflection phases with wideband unidirectional antennas," 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), 1283-1285, 2013.
doi:10.1109/EMBC.2013.6610023 Google Scholar
25. Priyadarshini, N. and E. Rajkumar, "Finite element modeling of scattered electromagnetic waves for stroke analysis," 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2404-2407, 2013.
doi:10.1109/TMTT.2014.2342669 Google Scholar
26. Mobashsher, A. T., A. M. Abbosh, and Y. Wang, "Microwave system to detect traumatic brain injuries using compact unidirectional antenna and wideband transceiver with verification on realistic head phantom," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, 1826-1836, 2014.
doi:10.1109/AUSMS.2014.7017347 Google Scholar
27. Mobashsher, A. T. and A. Abbosh, "Microwave imaging system to provide portable-low-powered medical facility for the detection of intracranial hemorrhage," 2014 1st Australian Microwave Symposium (AMS), 23-24, 2014.
doi:10.1371/journal.pone.0152351 Google Scholar
28. Mobashsher, A., K. Bialkowski, A. Abbosh, and S. Crozier, "Design and experimental evaluation of a non-invasive microwave head imaging system for intracranial haemorrhage detection," PloS One, Vol. 11, e0152351, 2016. Google Scholar
29. Zubal Phantom Data, [Online], , , Available: http://noodle.med.yale.edu/phantom/getdata.htm.
doi:10.1063/1.1750906
30. Cole, K. S. and R. H. Cole, "Dispersion and absorption in dielectrics I. Alternating current characteristics," The Journal of Chemical Physics, Vol. 9, 341-351, 1941.
doi:10.1088/0031-9155/41/11/001 Google Scholar
31. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine and Biology, Vol. 41, 2231, 1996.
doi:10.1088/0031-9155/41/11/002 Google Scholar
32. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, 2251, 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
33. Gabriel, S., R. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, 2271, 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
34. Gabriel, C., "Compilation of the dielectric properties of body tissues at RF and microwave frequencies,", DTIC Document, 1996.
doi:10.1088/0031-9155/54/16/002 Google Scholar
35. Gabriel, C., A. Peyman, and E. H. Grant, "Electrical conductivity of tissue at frequencies below 1 MHz," Physics in Medicine and Biology, Vol. 54, 4863-78, Aug. 21, 2009. Google Scholar
36. Andreuccetti, D., R. Fossi, and C. Petrucci, "Dielectric properties of body tissues," Applied Physics - Italian National Research Council, Florence, Italy, 2002, Online: http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.
doi:10.1109/TAP.2013.2242037 Google Scholar
37. Ireland, D. and A. Abbosh, "Modeling human head at microwave frequencies using optimized Debye models and FDTD method," IEEE Transactions on Antennas and Propagation, Vol. 61, 2352-2355, 2013.
doi:10.1109/TAP.2013.2296323 Google Scholar
38. Mustafa, S., A. M. Abbosh, and P. T. Nguyen, "Modeling human head tissues using fourth-order Debye model in convolution-based three-dimensional finite-difference time-domain," IEEE Transactions on Antennas and Propagation, Vol. 62, 1354-1361, 2014.
doi:10.1002/9780470602492 Google Scholar
39. Pastorino, M., Microwave Imaging, Vol. 208, John Wiley & Sons, 2010.
doi:10.1109/TAP.2010.2048860
40. Klemm, M., J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios," IEEE Transactions on Antennas and Propagation, Vol. 58, 2337-2344, 2010.
doi:10.1109/8.121595 Google Scholar
41. Joachimowicz, N., C. Pichot, and J.-P. Hugonin, "Inverse scattering: An iterative numerical method for electromagnetic imaging," IEEE Transactions on Antennas and Propagation, Vol. 39, 1742-1753, 1991.
doi:10.1109/MAES.2005.1576101 Google Scholar
42. Davidson, D. B., "Computational Electromagnetics for RF & microwave engineering," IEEE Aerospace and Electronic Systems Magazine, Vol. 20, 27, 2005.
doi:10.1088/0031-9155/52/18/015 Google Scholar
43. Semenov, S., J. Kellam, P. Althausen, T. Williams, A. Abubakar, A. Bulyshev, et al. "Microwave tomography for functional imaging of extremity soft tissues: Feasibility assessment," Physics in Medicine and Biology, Vol. 52, 5705, 2007.
doi:10.1049/iet-map.2013.0054 Google Scholar
44. Ireland, D., K. Bialkowski, and A. Abbosh, "Microwave imaging for brain stroke detection using born iterative method," IET Microwaves, Antennas & Propagation, Vol. 7, 909-915, 2013.
doi:10.2528/PIER13080706 Google Scholar
45. Zakaria, A., I. Jeffrey, and J. LoVetri, "Full-vectorial parallel finite-element contrast source inversion method," Progress In Electromagnetics Research, Vol. 142, 463-483, 2013. Google Scholar
46. Morega, M. and A. M. Morega, "Computed SAR in human head for the assessment of exposure from different phone device antennas," Environment Engineering and Management Journal, Vol. 10, 527-533, 2011.
doi:10.1016/j.ijheatmasstransfer.2011.09.027 Google Scholar
47. Wessapan, T., S. Srisawatdhisukul, and P. Rattanadecho, "Specific absorption rate and temperature distributions in human head subjected to mobile phone radiation at different frequencies," International Journal of Heat and Mass Transfer, Vol. 55, 347-359, 2012.
doi:10.1002/dac.2322 Google Scholar
48. Yasin Citkaya, A. and S. Selim Seker, "FEM modeling of SAR distribution and temperature increase in human brain from RF exposure," International Journal of Communication Systems, Vol. 25, 1450-1464, 2012. Google Scholar
49. Abdulrazzaq, S. A. and A. P. D. J. S. Aziz, "SAR simulation in human head exposed to RF signals and safety precautions," Int. J. Comput. Sci. Eng. Technol., Vol. 3, 334-340, 2013. Google Scholar
50. Sallomi, A., "A theoretical approach for SAR calculation in human head exposed to RF signals," Journal of Engineering and Development, Vol. 16, 2012. Google Scholar
51. "IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz," IEEE Std C95.1-2005 (Revision of IEEE Std C95.1-1991), 1-238, 2006. Google Scholar
52. "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, 494-522, 1998. Google Scholar