PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 53 > pp. 53-65

RECTANGULAR WAVE BEAM BASED GO/PO METHOD FOR RCS SIMULATION OF COMPLEX TARGET

By W.-Q. Jiang, M. Zhang, D. Nie, and Y.-C. Jiao

Full Article PDF (1,136 KB)

Abstract:
The rectangular wave beams-based geometrical optics (GO) and physical optics (PO) hybrid method is applied to the radar cross section (RCS) simulation of complex target. In the implementation process, the incident wave beam is divided into plenty of regular rectangular wave beams. The RCS of target is subsequently harvested from the sum of the contributions from rectangular wave beams. And Open Graphics Library (OpenGL) is used to accelerate ray tracing for the GO/PO method. Here, each pixel corresponds to a rectangular wave beam, which improves the defect that the pixel number should be larger than the patch number on the model and the efficiency in the general OpenGL based GO/PO method. In addition, the patch size in the presented method can be arbitrary as long as the model is described accurately with these patches. The simulation results prove this point and show that the proposed rectangular wave beam-based GO/PO method is feasible and can keep a high calculation accuracy and efficiency with a low pixel number.

Citation:
W.-Q. Jiang, M. Zhang, D. Nie, and Y.-C. Jiao, "Rectangular Wave Beam Based GO/PO Method for RCS Simulation of Complex Target," Progress In Electromagnetics Research M, Vol. 53, 53-65, 2017.
doi:10.2528/PIERM16102401

References:
1. Delgado, C., E. Garcia, J. Moreno, I. Gonzalez-Diego, and M. F. Catedra, "An overview of the evolution of method of moments techniques in modern EM simulators (invited paper)," Progress In Electromagnetics Research, Vol. 150, 109-121, 2015.
doi:10.2528/PIER14121603

2. Guillod, T., F. Kehl, and C. V. Hafner, "FEM-based method for the simulation of dielectric waveguide grating biosensors," Progress In Electromagnetics Research, Vol. 137, 565-583, 2013.
doi:10.2528/PIER13020502

3. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

4. Knott, E. F., "RCS reduction of dihedral corners," IEEE Trans. Antennas Propag., Vol. 25, No. 3, 406-409, 1977.
doi:10.1109/TAP.1977.1141586

5. Yan, J., J. Hu, and Z. Nie, "Calculation of the physical optics scattering by trimmed NURBS surfaces," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1640-1643, 2014.
doi:10.1109/LAWP.2014.2348564

6. Kim, J. H., et al., "Analysis of FSS radomes based on physical optics method and ray tracing technique," IEEE Antennas Wireless Propag. Lett., Vol. 13, 868-871, 2014.

7. Ufimtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, Wiley, Hoboken, NJ, 2007.
doi:10.1002/0470109017

8. Tsang, L., et al., Scattering of Electromagnetic Waves (Vol. 2: Numerical Simulations), Viely, New York, 2001.
doi:10.1002/0471224308

9. Bucci, O. M., T. Isernia, and A. F. Morabito, "Optimal synthesis of circularly symmetric shaped beams," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 1954-1964, 2014.
doi:10.1109/TAP.2014.2302842

10. Tao, Y. B., H. Lin, and H. J. Bao, "Kd-tree based fast ray tracing for RCS prediction," Progress In Electromagnetics Research, Vol. 81, 329-341, 2008.
doi:10.2528/PIER08011305

11. Tao, Y., H. Lin, and H. Bao, "GPU-based shooting and bouncing ray method for fast RCS prediction," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 494-502, 2010.
doi:10.1109/TAP.2009.2037694

12. Ling, H., R. C. Chow, and S. W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Trans. Antennas Propag., Vol. 37, No. 2, 194-205, 1989.
doi:10.1109/8.18706

13. Wei, P. B., et al., "GPU-based combination of GO and PO for electromagnetic scattering from satellite," IEEE Trans. Antennas Propag., Vol. 60, No. 11, 5278-5285, 2012.
doi:10.1109/TAP.2012.2207679

14. Fan, T. Q. and L. X. Guo, "OpenGL-based hybrid GO/PO computation for RCS of electrically large complex objects," IEEE Antennas Wireless Propag. Lett., Vol. 13, 666-669, 2014.

15. Sundararajan, P. and M. Y. Niamat, "FPGA implementation of the ray tracing algorithm used in the Xpatch software," Proc. IEEE MWSCAS'01, Vol. 1, 446-449, Dayton, OH, Aug. 2001.

16. Jin, K.-S., T. Suh, S.-H. Suk, and H.-T. Kim, "Fast ray tracing using a space-division algorithm for RCS prediction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 119-126, Jan. 2006.
doi:10.1163/156939306775777341

17. Rius, J. M., M. Ferrando, and L. Jofre, "GRECO: Graphical electromagnetic computing for RCS prediction in real time," IEEE Antennas Propag. Mag., Vol. 35, No. 2, 7-17, 1993.
doi:10.1109/74.207645

18. Youssef, N. N., "Radar cross section of complex targets," Proc. of the IEEE, Vol. 77, 722-734, 1989.
doi:10.1109/5.32062


© Copyright 2010 EMW Publishing. All Rights Reserved