Vol. 58
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-07-18
A GPU Implementation of the Inverse Fast Multipole Method for Multi-Bistatic Imaging Applications
By
Progress In Electromagnetics Research M, Vol. 58, 159-169, 2017
Abstract
This paper describes a parallel implementation of the Inverse Fast Multipole Method (IFMM) for multi-bistatic imaging configurations. NVIDIAs Compute Unified Device Architecture (CUDA) is used to parallelize and accelerate the imaging algorithm in a Graphics Processing Unit (GPU). The algorithm is validated with synthetic data generated by the Modified Equivalent Current Approximation (MECA) method and experimental data collected by a Frequency-Modulated Continuous Wave (FMCW) radar system operating in the 70-77 GHz frequency band. The presented results show that the IFMM implementation using the CUDA platform is effective at significantly reducing the algorithm computational time, providing a 300X speedup when compared to the single core OpenMP version of the algorithm.
Citation
Luis E. Tirado, Galia Ghazi, Yuri Alvarez-Lopez, Fernando Las-Heras, and Jose Angel Martinez-Lorenzo, "A GPU Implementation of the Inverse Fast Multipole Method for Multi-Bistatic Imaging Applications," Progress In Electromagnetics Research M, Vol. 58, 159-169, 2017.
doi:10.2528/PIERM17021004
References

1. Sheen, D., D. McMakin, and T. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 9, 1581-1592, 2001.
doi:10.1109/22.942570

2. Ahmed, S. S., A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. P. Schmidt, "Advanced microwave imaging," IEEE Microwave Magazine, Vol. 13, No. 6, 26-43, Sep. 2012.
doi:10.1109/MMM.2012.2205772

3. Martinez-Lorenzo, J. A., F. Quivira, and C. M. Rappaport, "SAR imaging of suicide bombers wearing concealed explosive threats," Progress In Electromagnetics Research, Vol. 125, 255-272, 2012.
doi:10.2528/PIER11120518

4. Alvarez, Y., B. Gonzalez-Valdes, J. Martinez Lorenzo, F. Las-Heras, and C. Rappaport, "3D whole body imaging for detecting explosive-related threats," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4453-4458, 2012.
doi:10.1109/TAP.2012.2207068

5. Gonzalez-Valdes, B., Y. Alvarez, Y. Rodriguez-Vaqueiro, A. Arboleya-Arboleya, A. Garcia-Pino, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, "Millimeter wave imaging architecture for on-the-move whole body imaging," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2328-2338, Jun. 2016.
doi:10.1109/TAP.2016.2539372

6. Gonzalez-Valdes, B., C. Rappaport, J. A. M. Lorenzo, Y. Alvarez, and F. Las-Heras, "Imaging effectiveness of multistatic radar for human body imaging," 2015 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 681-682, Jul. 2015.

7. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, Vol. 35, No. 3, 7-12, Jun. 1993.
doi:10.1109/74.250128

8. Darve, E., "The fast multipole method: Numerical implementation," Journal of Computational Physics, Vol. 160, No. 1, 195-240, 2000, [Online], Available: http://www.sciencedirect.com/science/article/pii/S0021999100964519.
doi:10.1006/jcph.2000.6451

9. Eibert, T. F. and C. H. Schmidt, "Multilevel fast multipole accelerated inverse equivalent current method employing rao-wilton-glisson discretization of electric and magnetic surface currents," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1178-1185, Apr. 2009.
doi:10.1109/TAP.2009.2015828

10. Alvarez-Lopez, Y., F. Las-Heras, M. R. Pino, and J. A. Lopez, "Acceleration of the sources reconstruction method via the fast multipole method," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, Jul. 2008.

11. Alvarez, Y., J. A. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, "An inverse fast multipole method for geometry reconstruction using scattered field information," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3351-3360, 2012.
doi:10.1109/TAP.2012.2196950

12. Schnattinger, G. and T. F. Eibert, "Solution of the vectorial 3d inverse source problem by adjoint near-field fast multipole translations," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1-2, Jul. 2012.

13. Dang, V., Q. Nguyen, and O. Kilic, "Gpu cluster implementation of fmm-fit for large-scale electromagnetic problems," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1259-1262, 2014.
doi:10.1109/LAWP.2014.2332972

14. López-Portugués, M., J. A. López-Fernández, J. Menéndez-Canal, A. Rodríguez-Campa, and J. Ranilla, "Acoustic scattering solver based on single level fmm for multi-gpu systems," J. Parallel Distrib. Comput., Vol. 72, No. 9, 1057-1064, Sep. 2012, [Online], Available: http://www.sciencedirect.com/science/article/pii/S0743731511001481.
doi:10.1016/j.jpdc.2011.07.013

15. Martinez-Lorenzo, J., J. Heredia Juesas, and W. Blackwell, "A single-transceiver compressive reflector antenna for high-sensing-capacity imaging," IEEE Antennas and Wireless Propagation Letters, Vol. PP, No. 99, 1-1, 2015.

16. Molaei, A., G. Allan, J. Heredia, W. Blackwell, and J. Martinez-Lorenzo, "Interferometric sounding using a compressive reflector antenna," 2016 10th European Conference on Antennas and Propagation (EuCAP), IEEE, 1-4, 2016.

17. Juesas, J. H., G. Allan, A. Molaei, L. Tirado, W. Blackwell, and J. A. M. Lorenzo, "Consensus-based imaging using admm for a compressive reflector antenna," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE, 1304-1305, 2015.
doi:10.1109/APS.2015.7305041

18. Obermeier, R. and J. A. Martinez-Lorenzo, "Model-based optimization of compressive antennas for high-sensing-capacity applications," IEEE Antennas and Wireless Propagation Letters, Vol. PP, No. 99, 1-1, 2016.

19. Wang, L., L. Li, Y. Li, H. C. Zhang, and T. J. Cui, "Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface," Scientific Reports, Vol. 6, 26959, 2016.
doi:10.1038/srep26959

20. Gopalsami, N., S. Liao, T. W. Elmer, E. R. Koehl, A. Heifetz, A. C. Raptis, L. Spinoulas, and A. K. Katsaggelos, "Passive millimeter-wave imaging with compressive sensing," Optical Engineering, Vol. 51, No. 9, 091 614-1, 2012.
doi:10.1117/1.OE.51.9.091614

21. "Nvidia's next generation cuda compute architecture: Kepler gk110/210,", http://international.download.nvidia.com/pdf/kepler/nvidia-kepler-gk110-gk210-architecturewhitepaper.pdf, 2014.
doi:10.1117/1.OE.51.9.091614

22. Boyer, M., "Cuda kernel overhead,", http://www.cs.virginia.edu/∼mwb7w/cuda support/kerneloverhead.html, online, accessed Apr. 7, 2017.

23. Harris, M., "How to access global memory efficiently in cuda c/c++ kernels,", NVIDIA, Jan. 2013, [Online], Available: https://devblogs.nvidia.com/parallelforall/how-access-global-memory-efficiently-cuda-c-kernels/24.

24. "Nvidia, cuda occupancy calculator,", http://developer.download.nvidia.com/compute/cuda/cudaoccupancy calculator.xls, 2012.

25. Kirk, D. B. and W.-M. W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach, 3rd Ed., Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2016.

26. Alvarez, Y., J. Laviada, L. Tirado, C. Garcia, J. Martinez, F. Las-Heras, and C. M. Rappaport, "Inverse fast multipole method for monostatic imaging applications," IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 5, 1239-1243, Sep. 2013.
doi:10.1109/LGRS.2012.2237158

27. Meana, J., J. Á. Martínez-Lorenzo, F. Las-Heras, and C. Rappaport, "Wave scattering by dielectric and lossy materials using the modified equivalent current approximation (MECA)," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 11, 3757-3761, 2010.
doi:10.1109/TAP.2010.2071363

28. Ahmed, S. S., A. Schiessl, and L. P. Schmidt, "Multistatic mm-wave imaging with planar 2d-arrays," 2009 German Microwave Conference, 1-4, Mar. 2009.

29. "Hxi model 8300 73 GHz multi-static FMCW radar front end (RFE),", http://www.hxi.com/Products/hfnov12.pdf, 2012.