Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 61 > pp. 215-229


By N. Tal, L. Shatz, Y. Morag, and Y. Levron

Full Article PDF (2,249 KB)

This paper proposes an optimization method to improve the efficiency of air core inductors, which are frequently employed in near field communication, wireless power transfer, and power conversion systems. We propose a modification to the PEEC based method, which aims at further reducing the computational complexity associated with complex 3D topologies. The main idea is to optimize 3D structures based on a 2D analysis. The device low frequency behavior is estimated based on the full 3D topology, while corrections resulting from high frequency effects are estimated based on a 2D approximation. As a result, since 2D formulations are used to estimate the high frequency effects, it is possible to obtain small mesh sizes, and hence to decrease the computational load, enabling a fast iterative design process. In addition, the proposed method requires no special commercial software, and can be easily implemented in Matlab. Results are compared to a standard commercial FEM tool, CST EM studio, and the results match well.

N. Tal, L. Shatz, Y. Morag, and Y. Levron, "Design of Efficient Air Core Inductors Using a Partial Element Equivalent Circuit Method," Progress In Electromagnetics Research M, Vol. 61, 215-229, 2017.

1. Kim, H. J., J. Park, K. S. Oh, J. P. Choi, J. E. Jang, and J. W. Choi, "Near-field magnetic induction MIMO communication using heterogeneous multipole loop antenna array for higher data rate transmission," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1952-1962, 2016.

2. Bauernfeind, T., K. Preis, W. Renhart, O. Bíró, and M. Gebhart, "Finite element simulation of impedance measurement effects of NFC antennas," IEEE Trans. Magnetics, Vol. 51, No. 3, 2015.

3. Hong, S., S. Lee, S. Jeong, D. H. Kim, J. Song, H. Kim, and J. Kim, "Dual-directional near field communication tag antenna with effective magnetic field isolation from wireless power transfer system," IEEE Wireless Power Transfer Conference (WPTC), 1-3, 2017.

4. Sharma, A., G. Singh, D. Bhatnagar, I. J. Garcia Zuazola, and A. Perallos, "Magnetic field forming using planar multicoil antenna to generate orthogonal H-field components," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 2906-2915, 2017.

5. Chung, Y. D., C. Y. Lee, D. W. Kim, H. Kang, Y. G. Park, and Y. S. Yoon, "Conceptual design and operating characteristics of multi-resonance antennas in the wireless power charging system for superconducting MAGLEV train," IEEE Transactions on Applied Superconductivity, Vol. 27, No. 4, 2017.

6. Yodogawa, S. and M. Morishita, "Wireless power transfer system using a Helmholtz coil for electromagnetic suspension carrier system," 19th International Conference on Electrical Machines and Systems (ICEMS), 1-4, 2016.

7. Tuethong, P., P. Yutthagowith, and S. Maneerot, "Design and construction of a variable air-core inductor for lightning impulse current test on surge arresters," 33rd Int. Conf. Lightning Protection (ICLP), 1-4, 2016.

8. Akagi, T., S. Abe, M. Hatanaka, and S. Matsumoto, "An isolated dc-dc converter using air-core inductor for power supply on chip applications," IEEE Int. Telecomm. Energy Conf. (INTELEC), 1-6, 2015.

9. Barrera-Cardenas, R., T. Isobe, and M. Molinas, "Optimal design of air-core inductor for medium/high power dc-dc converters," IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), 1-8, 2016.

10. Liang, W., L. Raymond, and J. Rivas, "3-D-printed air-core inductors for high-frequency power converters," IEEE Trans. Power Electron., Vol. 31, No. 1, 52-64, 2016.

11. Naayagi, R. T. and A. J. Forsyth, "Design of high frequency air-core inductor for DAB converter," IEEE Int. Conf. Power Electron., Drives and Energy Systems (PEDES), 1-4, 2012.

12. Nour, Y., M. Orabi, and A. Lotfi, "High frequency QSW-ZVS integrated buck converter utilizing an air core inductor," IEEE Annual Applied Power Electron. Conf. (APEC), 1319-1323, 2012.

13. Meere, R., N. Wang, T. O’Donnell, S. Kulkarni, S. Roy, and S. Cian O’Mathuna, "Magnetic-core and air-core inductors on silicon: a performance comparison up to 100 MHz," IEEE Trans. Magnetics, Vol. 47, No. 10, 4429-4432, 2011.

14. Dowell, P. L., "Effects of eddy currents in transformer windings," Proceedings of the Institution of Electrical Engineers, Vol. 113, No. 8, 1387-1394, 1966.

15. Perry, M. P., "Multiple layer series connected winding design for minimum losses," IEEE Trans. Power Apparatus Syst., Vol. 96/98, No. 1, 116-123, Jan./Feb. 1979.

16. Bennet, E. and S. C. Larson, "Effective resistance of alternating currents of multilayer windings," Trans. Amer. Inst. Elect. Eng., Vol. 59, 1010-1017, 1940.

17. Vandelac, J. P. and P. D. Ziogas, "A novel approach for minimizing high frequency effects in high-frequency transformers copper losses," IEEE Trans. Power Electron., Vol. 3, No. 3, 266-276, Jul. 1988.

18. Ferreira, J. A., "Improved analytical modelling of conductive losses in magnetic components," IEEE Trans. Power Electron., Vol. 9, No. 1, 127-131, Jan. 1994.

19. Hurley, W. G., E. Gath, and J. G. Breslin, "Optimizing the A.C. resistance of multilayer transformer windings with arbitrary current waveforms," IEEE Trans. Power Electron., Vol. 15, No. 2, 369-376, Mar. 2000.

20. Hurley, W. G. and M. C. Duffy, "Calculation of self and mutual impedances in planar sandwich inductors," IEEE Trans. Magn., Vol. 33, No. 3, 2282-2290, May 1997.

21. Urling, A. M., et al., "Characterizing high frequency effects in a transformer windings - A guide to several significant articles," Proc. Appl. Power. Electron. Conf., 373-385, Mar. 1989.

22. Skutt, G. R. and P. S. Venkatraman, "Analysis and measurement of high frequency effects in high-current transformers - A comparison between analytical and numerical solutions," Appl. Power Electron. Conf., Los Angeles, CA, Mar. 1990.

23. Severns, R., "Additional losses in high-frequency magnetics due to non ideal field distributions," Proc. Appl. Power Electron. Conf., 333-338, Boston, MA, Feb. 1992.

24. Robert, F., P. Mathys, and J. P. Schauwers, "Ohmic losses calculation in SMPS transformers: Numerical study of Dowell’s approach accuracy," IEEE Trans. Magn., Vol. 34, No. 4, 1255-1257, Jul. 1998.

25. Robert, F., P. Mathys, B. Velaerts, and J. P. Schauwers, "Two-dimensional analysis of the edge effect field and losses in high-frequency transformer foils," IEEE Trans. Magn., Vol. 41, No. 8, 2377-2383, Aug. 2005.

26. Lotfi, A. W. and F. C. Lee, "Two dimensional field solutions for high frequency transformer windings," Proc. Virginia Power Electron. Conf., 1098-1104, 1993.

27. Zwysen, J., R. Gelagaev, J. Driesen, S. Goossens, K. Vanvlasselaer, W. Symens, and B. Schuyten, "Multi-objective design of a close-coupled inductor for a three-phase interleaved 140 kW dc-dc converter," 39th IECON, 1056-1061, Vienna, 2013.

28. Lotfi, A. W. and F. C. Lee, "Two-dimensional skin effect in power foils for high-frequency applications," IEEE Trans. Magn., Vol. 31, No. 2, 1003-1006, Mar. 1995.

29. Robert, F., P. Mathys, and J.-P. Schauwers, "A closed-form formula for 2-D ohmic losses calculation in SMPS transformer foils," IEEE Trans. Power Electron., Vol. 16, No. 3, 437-444, May 2001.

30. Hu, J. and Ch. R. Sullivan, "The quasi-distributed gap technique for planar inductors: Design guidelines," IEEE Ind. Appl. Conf., New Orleans, LA, 1997.

31. Boggetto, J. M., Y. Lembeye, J. P. Ferrieux, and J. P. Keradec, "Copper losses in power integrated inductors on silicon," Proc. 37th IAS Annu. Conf., 977-983, 2002.

32. Reatti, A. and M. K. Kazimierczuk, "Comparison of various methods for calculating the ac resistance of inductors," IEEE Trans. Magn., Vol. 38, No. 3, 1512-1518, May 2002.

33. Wang, N., T. O’Donnell, and C. O’Mathuna, "An improved calculation of copper losses in integrated power inductors on silicon," IEEE Trans. Power Electron., Vol. 28, No. 8, 3641-3647, 2013.

34. Barr, A. W., "Calculation of frequency-dependent impedance for conductors of rectangular cross section," AMP J. Technology, Vol. 1, 91-100, 1991.

35. Zhang, R., J. White, and J. Kassakian, "Fast simulation of complicated 3-D structures above lossy magnetic media," IEEE Trans. Magn., Vol. 50, No. 10, 1-16, Oct. 2014.

36. Rosskopf, A., E. Baer, C. Joffe, and C. Bonse, "Calculation of power losses in litz wire systems by coupling FEM and PEEC method," IEEE Trans. Power Electron., Vol. 31, No. 9, 6442-6449, 2016.

37. Kovacevic-Badstubner, I., R. Burkart, C. Dittli, A. Musing, and J. W. Kolar, "Fast method for the calculation of power losses in foil windings," Proceedings of the 17th European Conference on Power Electronics and Applications (ECCE Europe 2015), Geneva, Switzerland, Sep. 8-10, 2015.

38. Davies, J. and P. Silvester, "Finite elements in electromagnetics: A jubilee review," Appl. Comput. Electromagn. Soc. J., Vol. 9, 10-24, 1994.

39. MAXWELL, 2D&3D Field Simulator, Ansys Corp, .

40. CST EM STUDIO, 3D field simulator, CST Computer Simulation Technology GmbH, .

41. Zienkiewicz, O. C. and R. L. Taylor, The Finite Element Method Set, 6th Ed., Butterworth-Heinemann, London, U.K., 2005.

42. Humphries, S., Jr., Field Solutions on Computers, CRC Press, Boca Raton, FL, USA, 1997.

43. Lupi, S., F. Dughiero, E. Baake, and J. Lavers, "State of the art of numerical modeling for induction processes," COMPEL - The Int. J. Comput. Math. Electr. Electron. Eng., Vol. 27, No. 2, 335-349, 2008.

44. Ruehli, A. E., "Equivalent circuit models for three dimensional multiconductor systems," IEEE Trans. Microw. Theory Tech., Vol. 22, No. 3, 216-221, 1974.

45. Tran, T.-S., G. Meunier, P. Labie, and J. Aime, "Comparison of FEM-PEEC coupled method and finite-element method," IEEE Trans. Magn., Vol. 46, No. 4, 996-999, Apr. 2010.

46. Larsson, J., "Electromagnetics from a quasistatic perspective," Am. J. Phys., Vol. 75, 230-239, 2007.

47. Strunsky, B. M., "Short electric network of electric furnaces," GN-TIL, Moscow, 1962.

48. Paul, C. R., Introduction to Electromagnetic Compatibility, John Wiley & Sons Inc, Hoboken, New Jersey, 2006.

49. Magnusson, P. C., "Geometric mean distances of angle-shaped conductors," Transactions of the American Institute of Electrical Engineers, Vol. 70, No. 1, 121-123, 1951.

50. Rainal, A. J., "Computing inductive noise of chip packages," ATT Bell Lab. Tech. J., Vol. 63, No. 1, 177-195, Jan. 1984.

© Copyright 2010 EMW Publishing. All Rights Reserved