PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 62 > pp. 89-98

MM-WAVE DIELECTRIC PARAMETERS OF MAGNESIUM FLUORIDE GLASS WAFERS

By V. B. Yurchenko, M. Ciydem, M. L. Gradziel, and L. V. Yurchenko

Full Article PDF (381 KB)

Abstract:
We measured millimeter-wave dielectric parameters of magnesium fluoride glass wafers at the room temperature in the frequency band of 75--110 GHz by applying the open resonator technique based on the use of Bragg structures and related multi-layer assemblies. Through the comparison of measured and simulated transmission spectra of various structures, the dielectric constant of magnesium fluoride glass is found as ε= 5.50±0.01. The estimate for the loss tangent is found to be tanδ= 0.00005, with a possibility that the actual losses could be smaller than this value.

Citation:
V. B. Yurchenko, M. Ciydem, M. L. Gradziel, and L. V. Yurchenko, "MM-Wave Dielectric Parameters of Magnesium Fluoride Glass Wafers," Progress In Electromagnetics Research M, Vol. 62, 89-98, 2017.
doi:10.2528/PIERM17081805

References:
1. Lin, G., S. Diallo, R. Henriet, M. Jacquot, and Y. K. Chembo, "Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor," Opt. Lett., Vol. 20, 6009-6012, 2014.
doi:10.1364/OL.39.006009

2. Tavernier, H., P. Salzenstein, K. Volyanskiy, Y. K. Chembo, and L. Larger, "Magnesium fluoride whispering gallery mode disk-resonators for microwave photonics applications," IEEE Photonics Technol. Lett., Vol. 22, 1629-1631, 2010.

3. Yurchenko, L. and V. Yurchenko, "Self-generation of ultra-short pulses in a cavity with a dielectric mirror excited by an array of active THz devices," 8th Intl. Conf. on Terahertz Electronics, 49-52, Darmstadt, Germany, Sept. 28-29, 2000.

4. Yurchenko, L. V. and V. B. Yurchenko, "Analysis of the dynamical chaos in a cavity with an array of active devices," 12th Intl. Conf. on Microwaves and Radar. MIKON-98. Conf. Proc. (IEEE Cat. No.98EX195), Vol. 3, 723-727, Krakow, May 20-22, 1998.
doi:10.1109/MIKON.1998.742813

5. Geyer, R. G., J. Baker-Jarvis, and J. Krupka, "Variable-temperature microwave dielectric properties of singlecrystal fluorides," Developments in Dielectric Materials and Electronic Devices, Vol. 167, 51-55, Eds. K. M. Nair, R. Guo, A. S. Bhalla, S. I. Hirano, D. Suvorov; Proc. 106th Annual Meeting of the Am. Ceramic Soc., 2004.

6. Jacob, M. V., J. Mazierska, and J. Krupka, "Low temperature complex permittivity of MgF2 at microwave frequencies from TE01δ modes," APMC-2005 Asia-Pacific Microwave Conf. Proc., Vol. 5, paper 5, Suzhou, China, Dec. 4-7, 2005.

7. Clarke, R. N., A. P. Gregory, D. Cannell, M. Patrick, S. Wylie, I. Youngs, and G. Hill, A Guide to the Characterisation of Dielectric Materials at RF and Microwave Frequencies, NPL, Teddington, 2003.

8. Baker-Jarvis, J., M. D. Janezic, B. F. Riddle, R. T. Johnk, P. Kabos, C. L. Holloway, R. G. Geyer, and C. A. Grosvenor, Measuring the Permittivity and Permiability of Lossy Materials: Solids, Liquids, Metals, Building Materials, and Negative-Index Materials, NIST, Boulder, CO, 2005.

9. Krupnov, A. F., V. N. Markov, G. Y. Golubyatnikov, I. I. Leonov, Y. N. Konoplev, and V. V. Parshin, "Ultra-low absorption measurement in dielectrics in millimeter- and submillimeter-wave range," IEEE Trans. Microw. Theory Tech., Vol. 47, 284-289, 1999.
doi:10.1109/22.750225

10. Krupka, J., "Frequency domain complex permittivity measurements at microwave frequencies," Meas. Sci. Technol., Vol. 17, R55-R70, 2006.
doi:10.1088/0957-0233/17/6/R01

11. Egorov, V. N., "Resonance methods for microwave studies of dielectrics (review)," Instrum. Exp. Tech., Vol. 50, 143-175, 2007.
doi:10.1134/S0020441207020017

12. Yurchenko, V. B., "High-Q reflection notch method for mm-wave measurements of large dielectric losses using a stack resonator: Analysis and simulations," Progress In Electromagnetics Research M, Vol. 24, 265-279, 2012.
doi:10.2528/PIERM12042902

13. Yurchenko, V. B., M. Ciydem, M. Gradziel, J. A. Murphy, and A. Altintas, "Double-sided split-step mm-wave Fresnel lenses: Fabrication and focal field measurements," J. Europ. Opt. Soc. Rap. Public, Vol. 9, 14007-5, 2014.
doi:10.2971/jeos.2014.14007

14. Murphy, J. A., et al., "Multi-mode horn design and beam characteristics for the Planck satellite," J. Inst., Vol. 5, No. 4, T04001-24, 2010.

15. Yurchenko, V., M. Ciydem, M. Gradziel, A. Murphy, and A. Altintas, "Light-controlled photonics-based mm-wave beam switch," Optics Express, Vol. 24, 16471-16478, 2016.
doi:10.1364/OE.24.016471

16. Born, M. and E.Wolf, Principles of Optics, 7th Ed., Cambridge University Press, Cambridge, 2003.

17. Guo, H., J. Chen, and S. Zhuang, "Vector plane wave spectrum of an arbitrary polarized electromagnetic wave," Optics Express, Vol. 14, 2095-2100, 2006.
doi:10.1364/OE.14.002095

18. Zhou, G., X. Chu, and J. Zheng, "Analytical structure of an apertured vector Gaussian beam in the far field," Optics Commun., Vol. 281, 1929-1934, 2008.
doi:10.1016/j.optcom.2007.11.072


© Copyright 2010 EMW Publishing. All Rights Reserved