PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 61 > pp. 205-213

IMPROVED PERFORMANCE OF DOUBLE-T MONOPOLE ANTENNA FOR 2.4/5.6 GHZ DUAL-BAND WLAN OPERATION USING ARTIFICIAL MAGNETIC CONDUCTORS

By Z. Chamani and S. Jahanbakht

Full Article PDF (1,169 KB)

Abstract:
A novel artificial magnetic conductor (AMC) structure for realizing gain enhancement of a double-T monopole antenna for 2.4/5.6 GHz dual-band WLAN operation is presented. First, an initial AMC unit cell is proposed, and a 2x5 array of this unit cell is placed behind a double-T monopole antenna as a ground plane, then the AMC structure is modified and improved to achieve better performance. Briefly, more than 4 dB gain improvement and other desirable characteristics including suitable radiation patterns and adequate bandwidths are reported from the simulation results of the final designed structure, and the simulation is performed by CST MWS 2014 in any of the mentioned frequencies. Finally, the validity and applicability of this design are demonstrated through experimental results of the fabricated antenna.

Citation:
Z. Chamani and S. Jahanbakht, "Improved Performance of Double-T Monopole Antenna for 2.4/5.6 GHz Dual-Band WLAN Operation Using Artificial Magnetic Conductors," Progress In Electromagnetics Research M, Vol. 61, 205-213, 2017.
doi:10.2528/PIERM17090301

References:
1. Balanis, C. A., Antenna Theory Analysis & Design, 3rd Ed., John Wiley and Sons, New York, 2005.

2. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.

3. Mohamed-Hicho, N. M., E. Antonino-Daviu, M. Cabedo-Fabres, and M. Ferrando-Bataller, "A novel low-profile high-gain UHF antenna using high-impedance surfaces," IEEE Antennas and Wireless Propagation Lett., Vol. 14, 1014-1017, 2015.
doi:10.1109/LAWP.2015.2389274

4. Wang, B., C. Huang, W. Luo, and W. Ruan, "Low-profile broadband dual-polarized dipole antenna on AMC reflector for base station," Progress In Electromagnetics Research C, Vol. 74, 171-179, 2017.
doi:10.2528/PIERC17032101

5. Elwi, T. A., A. I. Imran, and Y. Alnaiemy, "A miniaturized lotus shaped microstrip antenna loaded with EBG structures for high gain-bandwidth product applications," Progress In Electromagnetics Research C, Vol. 60, 157-167, 2015.
doi:10.2528/PIERC15101804

6. Muhammad, N., et al., "High gain FSS aperture coupled microstrip patch antenna," Progress In Electromagnetics Research C, Vol. 64, 21-31, 2016.
doi:10.2528/PIERC16022102

7. Sievenpiper, D., L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

8. Rexhepi, T. and D. Crouse, "A study of composite substrates for VHF and UHF artificial magnetic conductors and their application to a SATCOM antenna," Progress In Electromagnetics Research C, Vol. 64, 1-9, 2016.
doi:10.2528/PIERC16030409

9. LibiMol, V., et al., "Radar cross section reduction property of high impedance surface on a lossy dielectric," Progress In Electromagnetics Research M, Vol. 46, 19-28, 2016.
doi:10.2528/PIERM15101606

10. Kuo, Y. and K. Wong, "Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9, 2187-2192, 2003.
doi:10.1109/TAP.2003.816391

11. Zhang, L. and T. Dong, "RCS reduction using a miniaturized uni-planar electromagnetic band gap structure for circularly polarized microstrip antenna array," Progress In Electromagnetics Research Letters, Vol. 66, 135-141, 2017.
doi:10.2528/PIERL17011504

12. Meriche, M. A., H. Attia, A. Messai, and T. A. Denidni, "Gain improvement of a wideband monopole antenna with novel artificial magnetic conductor," 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 1-2, IEEE, 2016.

13. El Ghabzouri, M., A. E. Salhi, P. Anacleto, and P. Mendes, "Enhanced low profile, dual-band antenna via novel electromagnetic band gap structure," Progress In Electromagnetics Research C, Vol. 71, 79-89, 2017.
doi:10.2528/PIERC16110904

14. Zheng, J. and S. Fang, "A new method for designing low RCS patch antenna using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 58, 125-131, 2016.
doi:10.2528/PIERL15122702

15. Yang, W., H. Wang, W. Che, and J. Wang, "A wideband and high-gain edge-fed patch antenna and array using artificial magnetic conductor structures," IEEE Antennas and Wireless Propagation Lett., Vol. 12, 769-772, 2013.
doi:10.1109/LAWP.2013.2270943

16. Majid, H. A., M. K. Abd Rahim, M. R. Hamid, M. F. M. Yusoff, N. A. Murad, N. A. Samsuri, O. B. Ayop, and R. Dewan, "Wideband antenna with reconfigurable band notched using EBG structure," Progress In Electromagnetics Research Letters, Vol. 54, 7-13, 2015.
doi:10.2528/PIERL15032404

17. Ta, S. X. and I. Park, "Design of miniaturized dual-band artificial magnetic conductor with easy control of second/first resonant frequency ratio," Journal of Electromagnetic Engineering and Science, Vol. 13, No. 2, 104-112, Jun. 2013.
doi:10.5515/JKIEES.2013.13.2.104

18. Li, H., Q. Cao, and Y. Wang, "A novel miniaturized frequency selective surface with very stable performance," Progress In Electromagnetics Research C, Vol. 75, 131-138, 2017.
doi:10.2528/PIERC17051603

19. Jaglan, N., B. K. Kanaujia, S. D. Gupta, and S. Srivastava, "Triple band notched UWB antenna design using electromagnetic band gap structures," Progress In Electromagnetics Research C, Vol. 66, 139-147, 2016.
doi:10.2528/PIERC16052304


© Copyright 2010 EMW Publishing. All Rights Reserved