Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 66 > pp. 1-10


By Y. Ohtera, J. Yu, and H. Yamada

Full Article PDF (797 KB)

We investigated the potential application of planar chiral metamaterials (PCMs) to near infrared wavelength filters for multispectral measurement through electromagnetic simulation. PCM assumed here was a two-dimensional sub-wavelength surface grating on a high index film with chiral unit cells. The PCM exhibits optical activity (OA) for normally incident light at a finite wavelength range. Thus, by sandwiching the PCM with a pair of linear polarizers, a polarization interference-type BPF can be constructed. We focused on an all-dielectric PCM consisting of a silicon chiral layer and a dielectric underclad layer on a silica substrate. Wavelength filtering characteristics with different bandwidths have been verified for several underclad materials such as Si3N4, Al2O3, and Si.

Y. Ohtera, J. Yu, and H. Yamada, "Analysis of Polarization Interference-Type BPF Arrays for Nir Spectroscopic Imaging Utilizing All-Dielectric Planar Chiral Metamaterials," Progress In Electromagnetics Research M, Vol. 66, 1-10, 2018.

1. Osborne, B. G., T. Fearn, and P. H. Hindle, Practical NIR Spectroscopy, 2nd Ed., Pearson Education Ltd., England, 1993.

2. Grahn, H. F., P. Geladi, and eds., Techniques and Applications of Hyperspectral Image Analysis, Wiley, England, 2007.

3. Herrala, E., T. Hyvarinen, O. Voutilainen, and J. Lammasniemi, "An optoelectronic sensor system for industrial multipoint and imaging spectroscopy," Sens. Actuators, Vol. A61, 335-338, 1997.

4. Morris, H. R., C. C. Hoyt, and P. J. Treado, "Imaging spectrometers for fluorescence and Raman microscopy: Acousto-optic and liquid crystal tunable filters," Appl. Spectroscopy, Vol. 48, No. 7, 857-866, 1994.

5. Wachman, E. S., W.-H. Niu, and D. L. Farkas, "AOTF Microscope for imaging with increased speed and spectral versatility," Biophys. J., Vol. 73, 1215-1222, 1997.

6. Brodbeck, K. J., A. E. Profio, and T. Frewin, "A system for real time fluorescence imaging in color for tumor diagnosis," Med. Phys., Vol. 14, No. 4, 637-639, 1987.

7. Gluck, N. S., R. B. Bailey, R. de la Rosa, and R. L. Hall, "Two-color imaging by the use of patterned optical filters bonded to focal-plane-array detectors," Appl. Opt., Vol. 35, No. 28, 5520-5523, 1996.

8. Lambrechts, A., P. Gonzalez, B. Geelen, P. Soussan, K. Tack, and M. Jayapala, "A CMOS-compatible, integrated approach to hyper- and multispectral imaging," Proceedings of 2014 IEEE International Electron Devices Meeting (IEDM), IEDM14-261–264, 2014.

9. Chen, Q. and D. R. S. Cumming, "High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films," Opt. Express, Vol. 18, No. 13, 14056-14062, 2010.

10. Cunningham, B. T., "Photonic crystal surfaces as a general purpose platform for label-free and fluorescent assays," J. Assoc. Lab. Automation, Vol. 15, 120-135, 2010.

11. Ohtera, Y., D. Kurniatan, and H. Yamada, "Design and fabrication of multi-channel Si/SiO2 autocloned photonic crystal edge filters," Appl. Opt., Vol. 50, No. 9, C50-C54, 2011.

12. Mitsuhashi, M., Y. Ohetra, and H. Yamada, "Near-infrared imaging of liquid mixtures utilizing multi-channel photonic crystal wavelength filters," Opt. Lett., Vol. 39, No. 18, 5301-5304, 2013.

13. Yariv, A. and P. Yeh, Optical Waves in Crystals, Sec. 5, Wiley, New York, 1984.

14. Papakostas, A., A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett., Vol. 90, No. 10, 107404-1-107404-4, 2003.

15. Bai, B., Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: Theoretical study," Phys. Rev. A, Vol. 76, No. 2, 023811-1-023811-12, 2007.

16. Gorkunov, M. V., A. A. Ezhov, V. V. Artemov, O. Y. Rogov, and S. G. Yudin, "Extreme optical activity and circular dichroism of chiral metal hole arrays," Appl. Phys. Lett., Vol. 104, No. 22, 221102-1-221102-4, 2014.

17. Decker, M., M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, "Strong optical activity from twisted-cross photonic metamaterials," Opt. Lett., Vol. 34, No. 16, 2501-2503, 2009.

18. Kenanakis, G., R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, "Flexible chiral metamaterials in the terahertz regime: A comparative study of various designs," Opt. Mat. Express, Vol. 2, No. 12, 1702-1712, 2012.

19. Konishi, K., B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. K. Gonokami, "Observation of extraordinary optical activity in planar chiral photonic crystals," Opt. Express, Vol. 16, No. 10, 7189-7196, 2008.

20. Ohtera, Y., "Numerical analysis of artificial optical activities of planar chiral nano-gratings," IEICE Trans. Electron., Vol. E97-C, No. 1, 33-39, 2014.

21. Wang, S. S. and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt., Vol. 32, No. 14, 2606-2613, 1993.

22. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Boston, 2005.

23. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat., Vol. 23, No. 4, 377-382, 1981.

24. Rosenblatt, D., A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron., Vol. 33, No. 11, 2038-2059, 1997.

25. Themelis, G., J. S. Yoo, and V. Ntziachristos, "Multispectral imaging using multiple-bandpass filters," Opt. Lett., Vol. 33, No. 9, 1023-1025, 2008.

© Copyright 2010 EMW Publishing. All Rights Reserved