Vol. 71
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-23
Resonant Characteristics of Circular HTC Superconducting Printed Antenna Covered with a Dielectric Layer
By
Progress In Electromagnetics Research M, Vol. 71, 9-18, 2018
Abstract
Effects of a superstrate layer on the resonant frequency and bandwidth of a high Tc superconducting (HTS) circular printed patch are investigated in this paper. For that, a rigorous full-wave spectral analysis of superconducting patch in multilayer configuration is described. In such an approach, the spectral dyadic Green's function which relates the tangential electric field and currents at various conductor planes should be determined. Integral equations are solved by a Galerkin's moment method procedure, and the complex resonance frequencies are studied with basis functions involving Chebyshev polynomials in conjunction with the complex resistive boundary condition. To include the superconductivity of the disc, its complex surface impedance is determined by using London's equation and the model of Gorter and Casimir. Numerical results are compared with experimental results of literature as well as with the most recent published calculations using different methods. A very good agreement is obtained. Finally, superstrate loading effects are presented and discussed showing interesting enhancement on the resonant characteristics of the superconducting antenna using combinations of Chebyshev polynomials as set of basis functions.
Citation
Fadila Benmeddour, Christophe Dumond, and Elhadi Kenane, "Resonant Characteristics of Circular HTC Superconducting Printed Antenna Covered with a Dielectric Layer," Progress In Electromagnetics Research M, Vol. 71, 9-18, 2018.
doi:10.2528/PIERM18052601
References

1. Kumar, G., Broadband Microstrip Antennas, Artech House, Boston London, 2003, ISBN 1-58053-244-6.

2. Pozar, D. M., "Considerations for millimeter wave printed antennas," IEEE Transactions on Antennas and Propagation, Vol. 31, 740-747, 1983.

3. Viani, F., L. Lizzi, M. Donelli, D. Pregnolato, G. Oliveri, and A. Massa, "Exploitation of parasitic smart antennas in wireless sensor networks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 993-1003, 2010.

4. Febvre, P. and M. Donelli, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.

5. Nisenoff, M. and J. Pond, "Superconductors and microwaves," IEEE Microwave Magazine, Vol. 10, No. 3, 84-95, 2009.

6. Hansen, R. C., Electrically Small, Superdirective, and Superconducting Antennas, John Wiley & Sons, Inc, Hoboken, New Jersey, 2006.

7. Fortaki, T., M. Amir, S. Benkouda, and A. Benghalia, "Study of high Tc superconducting microstrip antenna," PIERS Online, Vol. 5, No. 4, 346-349, 2010.

8. Khamas, S. K., M. J. Mehler, T. S. M. Maclean, and C. E. Gough, "High-T/sub c/superconducting short dipole antenna," Electronics Letters, Vol. 24, No. 8, 460-461, 1988.

9. El-Ghazaly, S. M., R. B. Hammond, and T. Itoh, "Analysis of superconducting microwave structures: Application to microstrip lines," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 3, 499-508, 1992.

10. Benkouda, S., A. Messai, M. Amir, S. Bedra, and T. Fortaki, "Characteristics of a high Tc superconducting rectangular microstrip patch on uniaxially anisotropic substrate," Physica C: Superconductivity, Vol. 502, 70-75, July 2014.

11. Bedra, S. and T. Fortaki, "Effects of superstrate layer on the resonant characteristics of superconducting rectangular microstrip patch antenna," Progress In Electromagnetics Research C, Vol. 62, 157-165, 2016.

12. Bedra, S. and T. Fortaki, "High-Tc superconducting rectangular microstrip patch covered with a dielectric layer," Physica C: Superconductivity and Its Applications, Vol. 524, 31-36, May 2016.

13. Barkat, O., "Theoretical study of superconducting annular ring microstrip antenna with several dielectric layers," Progress In Electromagnetics Research, Vol. 127, 31-48, 2012.

14. Benmeddour, F., C. Dumond, F. Benabdelaziz, and F. Bouttout, "Improving the performances of a high Tc superconducting circular microstrip antenna with multilayered configuration and anisotropic dielectrics," Progress In Electromagnetics Research C, Vol. 18, 169-183, 2011.

15. Bedra, S., R. Bedra, S. Benkouda, and T. Fortaki, "Efficient CAD model for the analysis of high Tc superconducting circular microstrip antenna on anisotropic substrates," Advanced Electromagnetics, Vol. 6, No. 2, May 2017.

16. Losada, V., R. R. Boix, and M. Horno, "Resonant modes of circular microstrip patches in multilayered substrates," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 4, 488-498, 1999.

17. Tulintsef, A. N., S. M. Ali, and J. A. Kong, "Input impedance of a probe-fed stacked circular microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 39, 381-390, Mar. 1991.

18. Garg, R., P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Inc, 2001.

19. Fang, D. G., Antenna Theory and Microstrip Antennas, Taylor and Francis Group, 2010.

20. Bedra, S., R. Bedra, S. Benkouda, and T. Fortaki, "Superstrate loading effects on the resonant characteristics of high Tc superconducting circular patch printed on anisotropic materials," Physica C: Superconductivity and Its Applications, Vol. 543, 1-7, December 2017.

21. Richard, M. A., K. B. Bhasin, and P. C. Claspy, "Superconducting microstrip antennas: An experimental comparison of two feeding methods," IEEE Transactions on Antennas and Propagation, Vol. 41, 967-974, 1993.