Vol. 72
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-08-17
Isolation Enhancement Using a Novel Array-Antenna Decoupling Surface for Microstrip Antennas
By
Progress In Electromagnetics Research M, Vol. 72, 49-59, 2018
Abstract
A novel array-antenna decoupling surface (ADS) for mutual coupling reduction in microstrip patch antenna is proposed in this paper. The proposed ADS is composed of a group of primary reflector patches and a pair of rectangular and T-shaped secondary reflector patches. Through generating the reflected waves with equal magnitude but out of phase of the coupling waves, the isolation of the antenna elements could be significantly improved by the novel proposed ADS. Then, for verification, a two-element microstrip antenna array covered by the proposed ADS with an edge-to-edge separation of 0.11λ00 is the wavelength of the operating frequency in free space) was designed and fabricated. As expected, the experimental results have demonstrated that an additional 40.4 dB isolation enhancement at the resonant frequency was achieved by the proposed ADS. Moreover, a much wider bandwidth of the isolation was also obtained than that of return loss of 10 dB. In addition, a gain improvement of 0.95 dB was achieved at 2.45 GHz by utilizing the novel ADS. Thus, the decoupling structure can be applied to multiple-input multiple-output (MIMO) systems for its simple structure and high isolation providing.
Citation
Zicheng Niu, Hou Zhang, Qiang Chen, and Tao Zhong, "Isolation Enhancement Using a Novel Array-Antenna Decoupling Surface for Microstrip Antennas," Progress In Electromagnetics Research M, Vol. 72, 49-59, 2018.
doi:10.2528/PIERM18070502
References

1. Vaughan, R. and J. B. Andersen, "Channels, propagation and antennas for mobile communications," The Institution of Electrical Engineers, 2003.

2. Foschini, G. J., "Layered space 2-time architecture for wireless communications in fading environment when using multi-element antennas," Bell Labs Technology, Vol. 1, 41-59, 1996.
doi:10.1002/bltj.2015

3. Allen, J. L. and B. L. Diamond, "Mutual coupling in array antennas,", Tech. Rep. 424 (ESD-TR-66-443), Lincoln Laboratory, M.I.T., Lexington, MA, 1966.

4. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936s-2946, 2003.
doi:10.1109/TAP.2003.817983

5. Radhi, A. H., N. A. Aziz, R. Nilavalan, and H. S. Al-Raweshidy, "Mutual coupling reduction between two PIFA using uni-planar fractal based EBG for MIMO application," 2016 Loughborough Antennas & Propagation Conference (LAPC), 1-5, 2016.

6. Habashi, A., J. Naurinia, and C. Ghbadi, "A rectangular defected ground structure for reduction of mutual coupling between closely spaced microstrip antennas," Proc. 20th Iranian Conf. Eng., 1347-1350, 2012.

7. Biswas, S. and D. Guha, "Stop-band characterization of an isolated DGS for reducing mutual coupling between adjacent antenna elements and experimental verification for dielectric resonator antenna array," International Journal of Electronics and Communications, Vol. 67, No. 4, 319-322, 2013.
doi:10.1016/j.aeue.2012.09.004

8. Hou, D. B., S. Xiao, B. Z. Wang, L. Jiang, J. Wang, and W. Hong, "Elimination of scan blindness with compact defected ground structures in microstrip phased array," IET Microwaves Antennas and Propagation, Vol. 3, No. 2, 269-275, 2009.
doi:10.1049/iet-map:20080037

9. Wang, Z. Y., L. Y. Zhao, Y. M. Cai, S. F. Zheng, and Y. Z. Yin, "A meta-surface antenna array decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system," Scientific Reports, Vol. 8, No. 3152, 2018.
doi:10.1038/s41598-017-18592-4

10. Wu, K. L., N. Chang, W. X. Mei, and Z. Y. Zhang, "Array-antenna decoupling surface," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6728-6738, 2017.
doi:10.1109/TAP.2017.2712818

11. Wei, C. N. and K. L. Wu, "Array-antenna decoupling surfaces for Quasi-Yagi antenna arrays," Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2103-2104, 2017.

12. Cheng, Y. F., X. Ding, W. Shao, and B. Z. Wang, "Reduction of mutual coupling between patch antennas using a polarization-conversion isolator," IEEE Antennas Wireless Propagation Letters, Vol. 16, 1257-1260, 2017.
doi:10.1109/LAWP.2016.2631621

13. Ghosh, C.-K., "A compact 4-channel microstrip MIMO antenna with reduced mutual coupling," International Journal of Electronics and Communications, Vol. 70, 873-879, 2016.
doi:10.1016/j.aeue.2016.03.018

14. Yang, X., Y. Liu, Y. X. Xu, and S. X. Gong, "Isolation enhancement in patch antenna array with fractal UC-EBG structure and cross slot," IEEE Antennas Wireless Propagation Letters, Vol. 16, 2175-2178, 2017.
doi:10.1109/LAWP.2017.2703170

15. Vishvaksenan, K. S., K. Mithra, R. Kalaiarasan, and K. S. Raj, "Mutual coupling reduction in microstrip patch antenna arrays using parallel coupled-line resonators," IEEE Antennas Wireless Propagation Letters, Vol. 16, 2146-2149, 2017.
doi:10.1109/LAWP.2017.2700521