Vol. 76

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Low Loss and High Transmission Electromagnetically Induced Transparency (EIT) Effect in Cylindrical through -Hole Dielectric Cubes

By Lei Zhu, Xin Zhao, Chunhui Zhao, Liang Dong, Feng Juan Miao, Chao Hui Wang, and Jing Guo
Progress In Electromagnetics Research M, Vol. 76, 207-215, 2018


We numerically demonstrate that an electromagnetically induced transparency (EIT) effect can be achieved in an all-dielectric metamaterial, whose micro unit consists of two cylindrical through-hole cubes (CTCs). Two CTCs produce electric and magnetic Mie resonances in the vicinity of 6.2 GHz, respectively. Specially, the appropriate control on the interaction between two Mie resonances can lead to destructive interference of scattering fields, and thus the EIT effect with low loss and high transmission can be achieved. The influences of key parameters of all-dielectric metamaterial on its EIT effects are also investigated. In addition, the slow wave property of proposed structure is verified by computing the group delay, and the superiority of CTC is discussed. Such an all-dielectric metamaterial may have potential applications in areas such as low loss slow wave devices and high sensitivity sensors.


Lei Zhu, Xin Zhao, Chunhui Zhao, Liang Dong, Feng Juan Miao, Chao Hui Wang, and Jing Guo, "Low Loss and High Transmission Electromagnetically Induced Transparency (EIT) Effect in Cylindrical through -Hole Dielectric Cubes," Progress In Electromagnetics Research M, Vol. 76, 207-215, 2018.


    1. Harris, S. E., J. E. Field, and A. Imamoglu, "Nonlinear optical processes using electromagnetically induced transparency," Physical Review Letters, Vol. 64, 1107-1110, 1990.

    2. Boller, K. J., A. Imamoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Physical Review Letters, Vol. 66, 2593-2596, 1991.

    3. Fleischhauer, M., A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Reviews of Modern Physics, Vol. 77, 633-673, 2005.

    4. Khardikov, V. V., E. O. Iarko, and S. L. Prosvirnin, "A giant red shift and enhancement of the light confinement in a planar array of dielectric bars," J. Opt., Vol. 14, 035103, 2012.

    5. Tidstrom, J., C. W. Neff, and L. M. Andersson, "Photonic crystal cavity embedded in electromagnetically induced transparency media," J. Opt., Vol. 12, 035105, 2010.

    6. Wan, M. L., J. N. He, Y. L. Song, and F. Q. Zhou, "Electromagnetically induced transparency and absorption in plasmonic metasurfaces based on near-field coupling," Physics Letters A, Vol. 379, 1791-1795, 2015.

    7. Hu, S., H. L. Yang, S. Han, X. J. Huang, and B. X. Xiao, "Tailoring dual-band electromagnetically induced transparency in planar metamaterials," J. Appl. Phys., Vol. 117, 043107, 2015.

    8. Alonso-Gonzalez, P., P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, "Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas," Optics Express, Vol. 21, 1270-1280, 2013.

    9. Zhang, K., C. Wang, L. Qin, R. W. Peng, D. H. Xu, X. Xiong, and M. Wang, "Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial," Optics Letters, Vol. 39, 3539-3542, 2014.

    10. Duan, X. Y., S. Q. Chen, H. F. Yang, H. Cheng, J. J. Li, W. W. Liu, C. Z. Gu, and J. G. Tian, "Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials," Appl. Phys. Lett., Vol. 101, 143105, 2012.

    11. Papasimakis, N., V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "Metamaterial analog of electromagnetically induced transparency," Phys. Rev. Lett., Vol. 101, 253903, 2008.

    12. Luk’yanchuk, B., N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nature Materials, Vol. 9, 707-715, 2010.

    13. Tassin, P., L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, "Low-loss metamaterials based on classical electromagnetically induced transparency," Phys. Rev. Lett., Vol. 102, 063901, 2009.

    14. Vafapour, Z. and H. Alaei, "Achieving a high Q-factor and tunable slow-light via classical electromagnetically induced transparency (Cl-EIT) in metamaterials," Plasmonics, Vol. 12, 479-488, 2017.

    15. Zhu, L., L. Dong, J. Guo, F. Y. Meng, and Q. Wu, "Tunable electromagnetically induced transparency in hybrid graphene/all-dielectric metamaterial," Appl. Phys. A, Vol. 123, 192, 2017.

    16. Ding, P., J. N. He, J. Q. Wang, C. Z. Fan, and E. J. Liang, "Electromagnetically induced transparency in all-dielectric metamaterial-waveguide system," Applied Optics, Vol. 54, 3708-3714, 2015.

    17. Kekatpure, R. D., E. S. Barnard, W. Cai, and M. L. Brongersma, "Phase-coupled plasmon-induced transparency," Physical Review Letters, Vol. 104, 243902, 2010.

    18. Jin, X. R., Y. H. Lu, J. Park, H. Y. Zheng, F. Gao, Y. Lee, J. Y. Rhee, K. W. Kim, H. Cheong, and W. H. Jang, "Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling," J. Appl. Phys., Vol. 111, 073101, 2012.

    19. Zhu, L., F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. H. Fu, K. Zhang, and G. H. Yang, "Magnetic metamaterial analog of electromagnetically induced transparency and absorption," Journal of Applied Physics, Vol. 117, 17D146, 2015.

    20. Ding, C. F., Y. T. Zhang, J. Q. Yao, C. L. Sun, D. G. Xu, and G. Z. Zhang, "Reflection-type electromagnetically induced transparency analogue in terahertz metamaterials," Chin. Phys. B, Vol. 23, 124203, 2014.

    21. Yang, Y. M., I. I. Kravchenko, D. P. Briggs, and J. Valentine, Dielectric metasurface analogue of electromagnetically induced transparency, Vol. 5, 5753, Nat. Commun., 2014.

    22. Zhang, F. L., Q. Zhao, J. Zhou, and S. X. Wang, "Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial," Optics Express, Vol. 21, 19675-19680, 2013.

    23. Meng, F. Y., Q. Wu, D. Erni, K. Wu, and J. Lee, "Polarization-Independent Metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 3013-3022, 2012.

    24. Zhang, J. F., W. Liu, X. D. Yuan, and S. Q. Qin, "Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials," J. Opt., Vol. 16, 125102, 2014.

    25. Zhang, S., A. G. Dentcho, Y. Wang, M. Liu, and X. Zhang, "Plasmon-induced transparency in metamaterials," Phys. Rev. Lett., Vol. 101, 047401, 2008.

    26. Li, H. M., S. B. Liu, S. Y. Liu, and H. F. Zhang, "Electromagnetically induced transparency with large group index induced by simultaneously exciting the electric and the magnetic resonance," Appl. Phys. Lett., Vol. 105, 133514, 2014.

    27. Li, H. M., S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, "Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response," Appl. Phys. Lett., Vol. 106, 083511, 2015.

    28. Zhu, L., L. Dong, F. Y. Meng, and Q. Wu, "Wide-angle and polarization-independent electromagnetically induced transparency-like effect based on pentacyclic structure," J. Opt., Vol. 16, 015103, 2014.

    29. Ren, M., Y. F. Yu, J. M. Tsai, H. Cai, W. M. Zhu, D. L. Kwong, and A. Q. Liu, "Design and experiments of a nano-opto-mechanical switch using EIT-like effects of coupled-ring resonator Solid-State Sensors," Actuators and Microsystems Conference, 1436-1439, Beijing, China, 2011.

    30. Zhang, J. F., W. Liu, Z. H. Zhu, X. D. Yuan, and S. Q. Qin, "Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators," Optics Express, Vol. 22, 30889-30898, 2014.

    31. Li, L. Y., J. F. Wang, H. Ma, J. Wang, M. D. Feng, H. L. Du, M. B. Yan, J. Q. Zhang, S. B. Qu, and Z. Xu, "Achieving all-dielectric metamaterial band-pass frequency selective surface via high-permittivity ceramics," Appl. Phys. Lett., Vol. 108, 122902, 2016.

    32. Zhao, Q., J. Zhou, F. L. Zhang, and D. Lippens, "Mie resonance-based dielectric metamaterials," Materials Today, Vol. 12, 60-69, 2009.

    33. Jahani, S. and Z. Jacob, "All-dielectric metamaterials," Nature Nanotechnology, Vol. 11, 23-36, 2016.

    34. Wei, Z. C., X. P. Li, N. F. Zhong, X. P. Tan, X. M. Zhang, H. Z. Liu, H. Y. Meng, and R. S. Liang, "Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device," Plasmonics, Vol. 12, 1-7, 2016.

    35. Kang, M., Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, "Slow light in a simple metamaterial structure constructed by cut and continuous metal strips," Appl. Phys. B, Vol. 100, 699-703, 2010.