PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 76 > pp. 207-215

LOW LOSS AND HIGH TRANSMISSION ELECTROMAGNETICALLY INDUCED TRANSPARENCY (EIT) EFFECT IN CYLINDRICAL THROUGH-HOLE DIELECTRIC CUBES

By L. Zhu, X. Zhao, C. Zhao, L. Dong, F. J. Miao, C. H. Wang, and J. Guo

Full Article PDF (626 KB)

Abstract:
We numerically demonstrate that an electromagnetically induced transparency (EIT) effect can be achieved in an all-dielectric metamaterial, whose micro unit consists of two cylindrical through-hole cubes (CTCs). Two CTCs produce electric and magnetic Mie resonances in the vicinity of 6.2 GHz, respectively. Specially, the appropriate control on the interaction between two Mie resonances can lead to destructive interference of scattering fields, and thus the EIT effect with low loss and high transmission can be achieved. The influences of key parameters of all-dielectric metamaterial on its EIT effects are also investigated. In addition, the slow wave property of proposed structure is verified by computing the group delay, and the superiority of CTC is discussed. Such an all-dielectric metamaterial may have potential applications in areas such as low loss slow wave devices and high sensitivity sensors.

Citation:
L. Zhu, X. Zhao, C. Zhao, L. Dong, F. J. Miao, C. H. Wang, and J. Guo, "Low Loss and High Transmission Electromagnetically Induced Transparency (EIT) Effect in Cylindrical through -Hole Dielectric Cubes," Progress In Electromagnetics Research M, Vol. 76, 207-215, 2018.
doi:10.2528/PIERM18082309

References:
1. Harris, S. E., J. E. Field, and A. Imamoglu, "Nonlinear optical processes using electromagnetically induced transparency," Physical Review Letters, Vol. 64, 1107-1110, 1990.
doi:10.1103/PhysRevLett.64.1107

2. Boller, K. J., A. Imamoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Physical Review Letters, Vol. 66, 2593-2596, 1991.
doi:10.1103/PhysRevLett.66.2593

3. Fleischhauer, M., A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Reviews of Modern Physics, Vol. 77, 633-673, 2005.
doi:10.1103/RevModPhys.77.633

4. Khardikov, V. V., E. O. Iarko, and S. L. Prosvirnin, "A giant red shift and enhancement of the light confinement in a planar array of dielectric bars," J. Opt., Vol. 14, 035103, 2012.
doi:10.1088/2040-8978/14/3/035103

5. Tidstrom, J., C. W. Neff, and L. M. Andersson, "Photonic crystal cavity embedded in electromagnetically induced transparency media," J. Opt., Vol. 12, 035105, 2010.
doi:10.1088/2040-8978/12/3/035105

6. Wan, M. L., J. N. He, Y. L. Song, and F. Q. Zhou, "Electromagnetically induced transparency and absorption in plasmonic metasurfaces based on near-field coupling," Physics Letters A, Vol. 379, 1791-1795, 2015.
doi:10.1016/j.physleta.2015.05.011

7. Hu, S., H. L. Yang, S. Han, X. J. Huang, and B. X. Xiao, "Tailoring dual-band electromagnetically induced transparency in planar metamaterials," J. Appl. Phys., Vol. 117, 043107, 2015.
doi:10.1063/1.4906853

8. Alonso-Gonzalez, P., P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, "Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas," Optics Express, Vol. 21, 1270-1280, 2013.
doi:10.1364/OE.21.001270

9. Zhang, K., C. Wang, L. Qin, R. W. Peng, D. H. Xu, X. Xiong, and M. Wang, "Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial," Optics Letters, Vol. 39, 3539-3542, 2014.
doi:10.1364/OL.39.003539

10. Duan, X. Y., S. Q. Chen, H. F. Yang, H. Cheng, J. J. Li, W. W. Liu, C. Z. Gu, and J. G. Tian, "Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials," Appl. Phys. Lett., Vol. 101, 143105, 2012.
doi:10.1063/1.4756944

11. Papasimakis, N., V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "Metamaterial analog of electromagnetically induced transparency," Phys. Rev. Lett., Vol. 101, 253903, 2008.
doi:10.1103/PhysRevLett.101.253903

12. Luk’yanchuk, B., N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nature Materials, Vol. 9, 707-715, 2010.
doi:10.1038/nmat2810

13. Tassin, P., L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, "Low-loss metamaterials based on classical electromagnetically induced transparency," Phys. Rev. Lett., Vol. 102, 063901, 2009.
doi:10.1103/PhysRevLett.102.053901

14. Vafapour, Z. and H. Alaei, "Achieving a high Q-factor and tunable slow-light via classical electromagnetically induced transparency (Cl-EIT) in metamaterials," Plasmonics, Vol. 12, 479-488, 2017.
doi:10.1007/s11468-016-0288-0

15. Zhu, L., L. Dong, J. Guo, F. Y. Meng, and Q. Wu, "Tunable electromagnetically induced transparency in hybrid graphene/all-dielectric metamaterial," Appl. Phys. A, Vol. 123, 192, 2017.
doi:10.1007/s00339-017-0821-9

16. Ding, P., J. N. He, J. Q. Wang, C. Z. Fan, and E. J. Liang, "Electromagnetically induced transparency in all-dielectric metamaterial-waveguide system," Applied Optics, Vol. 54, 3708-3714, 2015.
doi:10.1364/AO.54.003708

17. Kekatpure, R. D., E. S. Barnard, W. Cai, and M. L. Brongersma, "Phase-coupled plasmon-induced transparency," Physical Review Letters, Vol. 104, 243902, 2010.
doi:10.1103/PhysRevLett.104.243902

18. Jin, X. R., Y. H. Lu, J. Park, H. Y. Zheng, F. Gao, Y. Lee, J. Y. Rhee, K. W. Kim, H. Cheong, and W. H. Jang, "Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling," J. Appl. Phys., Vol. 111, 073101, 2012.
doi:10.1063/1.3699197

19. Zhu, L., F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. H. Fu, K. Zhang, and G. H. Yang, "Magnetic metamaterial analog of electromagnetically induced transparency and absorption," Journal of Applied Physics, Vol. 117, 17D146, 2015.
doi:10.1063/1.4916189

20. Ding, C. F., Y. T. Zhang, J. Q. Yao, C. L. Sun, D. G. Xu, and G. Z. Zhang, "Reflection-type electromagnetically induced transparency analogue in terahertz metamaterials," Chin. Phys. B, Vol. 23, 124203, 2014.
doi:10.1088/1674-1056/23/12/124203

21. Yang, Y. M., I. I. Kravchenko, D. P. Briggs, and J. Valentine, Dielectric metasurface analogue of electromagnetically induced transparency, Vol. 5, 5753, Nat. Commun., 2014.

22. Zhang, F. L., Q. Zhao, J. Zhou, and S. X. Wang, "Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial," Optics Express, Vol. 21, 19675-19680, 2013.
doi:10.1364/OE.21.019675

23. Meng, F. Y., Q. Wu, D. Erni, K. Wu, and J. Lee, "Polarization-Independent Metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 3013-3022, 2012.
doi:10.1109/TMTT.2012.2209455

24. Zhang, J. F., W. Liu, X. D. Yuan, and S. Q. Qin, "Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials," J. Opt., Vol. 16, 125102, 2014.
doi:10.1088/2040-8978/16/12/125102

25. Zhang, S., A. G. Dentcho, Y. Wang, M. Liu, and X. Zhang, "Plasmon-induced transparency in metamaterials," Phys. Rev. Lett., Vol. 101, 047401, 2008.
doi:10.1103/PhysRevLett.101.047401

26. Li, H. M., S. B. Liu, S. Y. Liu, and H. F. Zhang, "Electromagnetically induced transparency with large group index induced by simultaneously exciting the electric and the magnetic resonance," Appl. Phys. Lett., Vol. 105, 133514, 2014.
doi:10.1063/1.4897194

27. Li, H. M., S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, "Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response," Appl. Phys. Lett., Vol. 106, 083511, 2015.
doi:10.1063/1.4913888

28. Zhu, L., L. Dong, F. Y. Meng, and Q. Wu, "Wide-angle and polarization-independent electromagnetically induced transparency-like effect based on pentacyclic structure," J. Opt., Vol. 16, 015103, 2014.
doi:10.1088/2040-8978/16/1/015103

29. Ren, M., Y. F. Yu, J. M. Tsai, H. Cai, W. M. Zhu, D. L. Kwong, and A. Q. Liu, "Design and experiments of a nano-opto-mechanical switch using EIT-like effects of coupled-ring resonator Solid-State Sensors," Actuators and Microsystems Conference, 1436-1439, Beijing, China, 2011.

30. Zhang, J. F., W. Liu, Z. H. Zhu, X. D. Yuan, and S. Q. Qin, "Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators," Optics Express, Vol. 22, 30889-30898, 2014.
doi:10.1364/OE.22.030889

31. Li, L. Y., J. F. Wang, H. Ma, J. Wang, M. D. Feng, H. L. Du, M. B. Yan, J. Q. Zhang, S. B. Qu, and Z. Xu, "Achieving all-dielectric metamaterial band-pass frequency selective surface via high-permittivity ceramics," Appl. Phys. Lett., Vol. 108, 122902, 2016.
doi:10.1063/1.4944644

32. Zhao, Q., J. Zhou, F. L. Zhang, and D. Lippens, "Mie resonance-based dielectric metamaterials," Materials Today, Vol. 12, 60-69, 2009.
doi:10.1016/S1369-7021(09)70318-9

33. Jahani, S. and Z. Jacob, "All-dielectric metamaterials," Nature Nanotechnology, Vol. 11, 23-36, 2016.
doi:10.1038/nnano.2015.304

34. Wei, Z. C., X. P. Li, N. F. Zhong, X. P. Tan, X. M. Zhang, H. Z. Liu, H. Y. Meng, and R. S. Liang, "Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device," Plasmonics, Vol. 12, 1-7, 2016.

35. Kang, M., Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, "Slow light in a simple metamaterial structure constructed by cut and continuous metal strips," Appl. Phys. B, Vol. 100, 699-703, 2010.
doi:10.1007/s00340-010-4184-6


© Copyright 2010 EMW Publishing. All Rights Reserved