PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 76 > pp. 167-175

ASYMMETRIC GROUND STRUCTURED CIRCULARLY POLARIZED ANTENNA FOR ISM AND WLAN BAND APPLICATIONS

By B. Prudhvi Nadh, B. T. P. Madhav, M. Siva Kumar, M. Venkateswara Rao, and T. Anilkumar

Full Article PDF (1,133 KB)

Abstract:
This article presents the design and analysis of a dual-band antenna with circular polarization for ISM and WLAN band applications. The proposed antenna operates at two frequencies ranging from 2.1-3.1 GHz and 4.4-7.7 GHz with resonating frequencies at 2.45 GHz industrial, scientific and medical band (ISM) and 5.8 GHz wireless local area network band (WLAN). The antenna is fed by coplanar waveguide feeding (CPW) with an asymmetric ground structure, and the radiating element consists of 24 spokes in the design. The current antenna providing the impedance bandwidths of 38.4% and 49% at two operating bands. The proposed antenna exhibiting circular polarisation with 3 dB axial ratio bandwidth of 150 MHz at 2.33-2.48 GHz and 1600 MHz at 5.14-6.74 GHz. The designed antenna is fabricated on an RT Duroid 5880 substrate with dimensions of 40 x 28 x 0.4 mm3. The intension behind the design of this antenna is to use it for wearable applications in conformal nature with low specific absorption rate (SAR). The SAR values observed at two operating frequencies are 1.09 W/Kg and 1.47 W/Kg, respectively. The placement and radiation characteristics analysis is done with Ansys Savant tool, and the subsequent measured results provide good correlation with simulation results.

Citation:
B. Prudhvi Nadh, B. T. P. Madhav, M. Siva Kumar, M. Venkateswara Rao, and T. Anilkumar, "Asymmetric Ground Structured Circularly Polarized Antenna for ISM and WLAN Band Applications," Progress In Electromagnetics Research M, Vol. 76, 167-175, 2018.
doi:10.2528/PIERM18091405

References:
1. Zhu, D., Y.-X. Guo, M. Je, and D.-L. Kwong, "Design and in vitro test of a differentially fed dualband implantable antenna operating at MICS and ISM bands," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2430-2439, 2014.
doi:10.1109/TAP.2014.2309130

2. Velan, S. and E. F. Sundarsingh, "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 249-252, 2015.
doi:10.1109/LAWP.2014.2360710

3. Tak, J., S. Woo, J. Kwon, and J. Choi, "Dual-band dual-mode patch antenna for on-/off-body WBAN communications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 348-351, 2016.
doi:10.1109/LAWP.2015.2444881

4. Deepak, U., T. K. Roshna, C. M. Nijas, K. Vasudevan, and P. Mohanan, "A dual band SIR coupled dipole antenna for 2.4/5.2/5.8 GHz applications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1514-1520, 2015.
doi:10.1109/TAP.2015.2393876

5. Xu, L.-J., Z. Duan, and Y.-M. Tang, "A dual-band on-body repeater antenna for body sensor network," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1649-1652, 2016.
doi:10.1109/LAWP.2016.2520023

6. Kang, D.-G., J. Tak, and J. Choi, "Dual-band on-body antenna for in-on-on WBAN repeater applications," Microwave and Optical Technology Letters, Vol. 58, No. 2, 436-441, 2016.
doi:10.1002/mop.29591

7. Lu, L. and J. C. Coetzee, "A modified dual-band microstrip monopole antenna," Microwave and Optical Technology Letters, Vol. 48, No. 7, 1401-1403, 2006.
doi:10.1002/mop.21636

8. Yeung, S. H., K. F. Man, and W. S. Chan, "Optimised design of an ISM band antenna using a jumping genes methodology," IET Microwaves, Antennas & Propagation, Vol. 2, No. 3, 259-267, 2008.
doi:10.1049/iet-map:20070117

9. Tak, J., D.-G. Kang, and J. Choi, "A compact dual-band monopolar patch antenna using TM01 and TM41 modes," Microwave and Optical Technology Letters, Vol. 58, No. 7, 1699-1703, 2016.
doi:10.1002/mop.29889

10. Zhu, X.-Q., Y.-X. Guo, and W. Wu, "A novel dual-band antenna for wireless communication applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 516-519, 2016.
doi:10.1109/LAWP.2015.2456039

11. Tran, H. H. and I. Park, "Wideband circularly polarized cavity-backed asymmetric crossed bowtie dipole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 358-361, 2016.
doi:10.1109/LAWP.2015.2445939

12. Tu, T. L., H. H. Tran, and H. C. Park, "A simple penta-band circularly polarized cpw-fed monopole-patch antenna covering six commercial application bands," Microwave and Optical Technology Letters, Vol. 60, No. 3, 773-778, 2018.
doi:10.1002/mop.31046

13. Zahran, S. R., M. A. Abdalla, and A. Gaafar, "Time domain analysis for foldable thin UWB monopole antenna," AEU-International Journal of Electronics and Communications, Vol. 83, 253-262, 2018.
doi:10.1016/j.aeue.2017.09.006

14. Saygin, H., V. Rafiei, and S. Karamzadeh, "A new compact dual band CP antenna design," Microwave and Optical Technology Letters, Vol. 60, No. 3, 594-600, 2018.
doi:10.1002/mop.31019

15. Sajal, S., B. D. Braaten, T. Tolstedt, S. Asif, and M. J. Schroeder, "Design of a conformal monopole antenna on a paper substrate using the properties of graphene-based conductors," Microwave and Optical Technology Letters, Vol. 59, No. 6, 1279-1283, 2017.
doi:10.1002/mop.30524

16. Ahmed, M. I., M. F. Ahmed, and A. E. H. Shaalan, "SAR calculations of novel wearable fractal antenna on metamaterial cell for search and rescue applications," Progress In Electromagnetics Research, Vol. 53, 99-110, 2017.
doi:10.2528/PIERM16110706

17. Shin, C. S., D. G. Choi, N. Kim, and J. I. Choi, "Internal monopole antenna design for multi-band operation and SAR analysis," PIERS Proceedings, 294-297, Hangzhou, Zhejiang, China, Aug. 22–26, 2005.

18. Ahmed, M. I., E. A. Abdallah, and H. M. Elhennawy, "Novel wearable eagle shape microstrip antenna array with mutual coupling reduction," Progress In Electromagnetics Research B, Vol. 62, 87-103, 2015.
doi:10.2528/PIERB14120901


© Copyright 2010 EMW Publishing. All Rights Reserved