PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 76 > pp. 157-166

CROSS POLARIZED 2×2 UWB-MIMO ANTENNA SYSTEM FOR 5G WIRELESS APPLICATIONS

By H. Alsaif, M. Usman, M. T. Chughtai, and J. Nasir

Full Article PDF (815 KB)

Abstract:
A novel cross polarized compact antenna system is proposed for Ultra Wide Band communications. It also covers the sub-6 GHz band for initial 5G launch. The overall antenna system is a distinctive combination of Multiple Input Multiple Output (MIMO) antenna system covering radio frequency (RF) band starting from 2 GHz to 12 GHz. This MIMO system consists of two F-shaped monopoles with slotted fractured ground planes. The two antennas are fabricated back to back with 90 degree difference. The overall volume of the MIMO antenna system is 14 mm × 14 mm × 0.25 mm. Due to its very compact design, it is suitable for mobile phones and other hand-held devices. The peak measured gain has been achieved as 4.8 dB, and the measured far field patterns are nearly isotropic. Envelope Correlation Coefficient (ECC) and Gain Diversity are presented for the proposed MIMO antenna system.

Citation:
H. Alsaif, M. Usman, M. T. Chughtai, and J. Nasir, "Cross Polarized 2×2 UWB-MIMO Antenna System for 5G Wireless Applications," Progress In Electromagnetics Research M, Vol. 76, 157-166, 2018.
doi:10.2528/PIERM18101103

References:
1. Maccartney, G. R., T. S. Rappaport, S. Sun, and S. Deng, "Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks," IEEE Access, Vol. 3, 2388-2424, 2015, doi: 10.1109/ACCESS.2015.2486778.

2. Ndip, I., T. H. Le, O. Schwanitz, and K.-D. Lang, "A comparative analysis of 5G mmWave antenna arrays on different substrate technologies," 22nd International Microwave and Radar Conference (MIKON) 2018, 222-225, 2018.

3. Mao, C.-X., S. Gao, and Y. Wang, "Broadband high-gain beam-scanning antenna array for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 9, 4864-4868, 2017.

4. AL-Saif, H., M. Usman, M. T. Chughtai, and J. Nasir, "Compact ultra-wide band MIMO antenna system for lower 5G bands," Wireless Communications and Mobile Computing, Vol. 2018, Article ID 2396873, 6 pages, 2018, https://doi.org/10.1155/2018/2396873.

5. Matinmikko, M., M. Latva-aho, P. Ahokangas, and V. Seppänen, "On regulations for 5G: Micro licensing for locally operated networks," Telecommunications Policy, Vol. 42, No. 8, 622-635, 2018, ISSN 0308-5961, https://doi.org/10.1016/j.telpol.2017.09.004.

6. Marsden, R. and H.-M. Ihle, "Mechanisms to incentivise shared-use of spectrum," Telecommunications Policy, Vol. 42, No. 4, 315-322, 2018, ISSN 0308-5961, https://doi.org/10.1016/j.telpol.2017.07.001.

7. Dighriri, M., G. M. Lee, and T. Baker, "Measurement and classification of smart systems data traffic over 5G mobile networks," Technology for Smart Futures, M. Dastbaz, H. Arabnia, and B. Akhgar (eds.), Publisher Springer, Cham, 2018, ISBN 978-3-319-60136-6, https://doi.org/10.1007/978-3-319-60137-3_9.

8. Li, S., D. Xu, and S. Zhao, "5G internet of things: A survey," Journal of Industrial Information Integration, Vol. 10, 1-9, 2018, ISSN 2452-414X, https://doi.org/10.1016/j.jii.2018.01.005.

9. Wu, Y., K. Ding, B. Zhang, J. Li, D. Wu, and K. Wang, "Design of a compact UWB MIMO antenna without decoupling structure," International Journal of Antennas and Propagation, Vol. 2018, Article ID 9685029, 7 pages, 2018, https://doi.org/10.1155/2018/9685029.

10. Wang, F., Z. Duan, S. Li, Z.-L. Wang, and Y.-B. Gong, "Compact UWB MIMO antenna with metamaterial-inspired isolator," Progress In Electromagnetics Research C, Vol. 84, 61-74, 2018.

11. Wu, L., Y. Xia, X. Cao, and Z. Xu, "A miniaturized UWB-MIMO antenna with quadruple band-notched characteristics," International Journal of Microwave and Wireless Technologies, 1-8, 2018, doi:10.1017/S1759078718000508.

12. Usman, M., et al., "New compact dual polarised dipole antenna for MIMO communications," 2010 International ITG Workshop on Smart Antennas (WSA), 326-330, Bremen, 2010, doi: 10.1109/WSA.2010.5456429.

13. Malviya, L., R. Panigrahi, and M. Kartikeyan, "MIMO antennas with diversity and mutual coupling reduction techniques: A review," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 8, 1763-1780, 2017, doi:10.1017/S1759078717000538.

14. Usman, M., R. A. Abd-Alhameed, and P. S. Excell, "Design considerations of MIMO antennas for mobile phones," PIERS Online, Vol. 4, No. 1, 121-125, 2008.

15. Hong, J.-K., "Performance analysis of dual-polarized massive MIMO system with human-care IoT devices for cellular networks," Journal of Sensors, Vol. 2018, Article ID 3604520, 8 pages, 2018, https://doi.org/10.1155/2018/3604520.

16. Jo, O., J. Kim, J. Yoon, D. Choi, and W. Hong, "Exploitation of dual-polarization diversity for 5G millimeter-wave MIMO beam-forming systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6646-6655, Dec. 2017, doi: 10.1109/TAP.2017.2761979.

17. Gao, C., X. Q. Li, W. J. Lu, and K. L. Wong, "Conceptual design and implementation of a four-element MIMO antenna system packaged within a metallic handset," Microw. Opt. Technol. Lett., Vol. 60, 436-444, 2018, https://doi.org/10.1002/mop.30978.

18. Al-Hadi, A. A., J. Ilvonen, R. Valkonen, and V. Viikari, "Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500 MHz band," Microw. Opt. Technol. Lett., Vol. 56, 1323-1327, 2014, doi:10.1002/mop.28316.

19. Li, Y., C. Sim, Y. Luo, and G. Yang, "12-port 5G massive MIMO antenna array in sub-6 GHz mobile handset for LTE bands 42/43/46 applications," IEEE Access, Vol. 6, 344-354, 2018, doi: 10.1109/ACCESS.2017.2763161.

20. Li, M., et al., "Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 3820-3830, Sep. 2016, doi: 10.1109/TAP.2016.2583501.

21. Thomas, K. G. and M. Sreenivasan, "A simple ultrawideband planar rectangular printed antenna with band dispensation," IEEE Transactions on Antennas and Propagation, Vol. 58, 27-34, 2010.

22. Chandel, R., A. K. Gautam, and K. Rambabu, "Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 1677-1684, Apr. 2018, doi: 10.1109/TAP.2018.2803134.

23., "CST: Microwave Studio based on the finite integration technique,".

24. Zhang, S., K. Zhao, Z. Ying, and S. He, "Adaptive quad-element multi-wideband antenna array for user-effective LTE MIMO mobile terminals," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4275-4283, Aug. 2013, doi: 10.1109/TAP.2013.2260714.

25. Rasilainen, K., A. Lehtovuori, A. Boussada, and V. Viikari, "Carrier aggregation compatible MIMO antenna for LTE handset," Progress In Electromagnetics Research C, Vol. 78, 1-10, 2017.

26. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Transactions on Vehicular Technology, Vol. 36, 149-172, 1987.

27. Nasir, J., M. H. Jamaluddin, M. Khalily, M. R. Kamarudin, I. Ullah, and R. Selvaraju, "A reduced size dual port MIMO DRA with high isolation for 4G applications," International Journal of RF and Microwave Computer Aided Engineering, Vol. 25, 495-501, 2015.

28. Lee, W. C., Mobile Communications Engineering, McGraw-Hill Professional, 1982.

29. Rosengren, K. and P.-S. Kildal, "Radiation efficiency, correlation, diversity gain and capacity of a six-monopole antenna array for a MIMO system: Theory, simulation and measurement in reverberation chamber," IEE Proceedings-Microwaves, Antennas and Propagation, Vol. 152, 7-16, 2005.


© Copyright 2010 EMW Publishing. All Rights Reserved