Vol. 79
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-02-13
Polarization-Insensitive Frequency-Selective Rasorber Based on Square-Loop Element
By
Progress In Electromagnetics Research M, Vol. 79, 41-49, 2019
Abstract
This paper presents a polarization-insensitive frequency selective rasorber which has high in-band transmission at high frequency and wideband absorption at low frequency based on square-loop and parallel LC resonance. The rasorber consists of a bandpass FSS and a resistive sheet plus a slot-type metallic four-legged loaded element as the bandpass FSS element. The resistive element is realized by inserting several strip-type parallel LC structures into a resistor-loaded square-loop element, which allows the surface current to be controlled as necessary and the wave at the resonance frequency to be passed with minimum insertion loss. Wideband absorption is realized at low frequency, where the bandpass FSS is nearly totally reflected, and the FSR performs as an absorber. Simulation results show the transmission band at 9.9 GHz with transmissivity higher than 96% and the absorption band with absorptivity higher than 85% from 2.83 GHz to 8.6 GHz for TE-polarized 30˚ incidence and from 3.22 GHz to 8.48 GHz for TM-polarized 30˚ incidence. The absorptive/transmissive performance of the FSR structure is also verified ed by experimental measurements.
Citation
Qiang Chen, Min Guo, Di Sang, and Yunqi Fu, "Polarization-Insensitive Frequency-Selective Rasorber Based on Square-Loop Element," Progress In Electromagnetics Research M, Vol. 79, 41-49, 2019.
doi:10.2528/PIERM18110607
References

1. Munk, B. A., Metamaterials: Critique and Alternatives, Wiley, New Jersey, 2009.

2. Costa, F. and A. Monorchio, "A frequency selective radome with wideband absorbing properties," IEEE Trans. Antennas Propag., Vol. 60, No. 6, 2740-2747, 2012.
doi:10.1109/TAP.2012.2194640

3. Shang, Y. P., Z. X. Shen, and S. Q. Xiao, "Frequency-selective rasorber based on square-loop and cross-dipole arrays," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5581-5589, 2014.
doi:10.1109/TAP.2014.2357427

4. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770

5. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra-thin electro-magnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1511-1558, 2010.
doi:10.1109/TAP.2010.2044329

6. Li, M., S. Xiao, Y. Bai, and B. Wang, "An ultrathin and broadband radar absorber using resistive FSS," IEEE Antennas Wireless Propag., Vol. 11, 748-751, 2012.

7. Han, Y., W. Che, C. Christopoulos, Y. Xiong, and Y. Chang, "A fast and efficient design method for circuit analog absorbers consisting of resistive square-loop arrays," IEEE Trans. Electromagn. Compat., Vol. 58, No. 3, 747-757, 2016.
doi:10.1109/TEMC.2016.2524553

8. Shang, Y., Z. Shen, and S. Xiao, "On the design of single-layer circuit analog absorber using double-square-loop array," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 6022-6029, 2013.
doi:10.1109/TAP.2013.2280836

9. Yang, J. and Z. Shen, "A thin and broadband absorber using double-square loops," IEEE Antennas Wireless Propag. Lett., Vol. 6, 388-391, 2007.
doi:10.1109/LAWP.2007.903496

10. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber," IET Microw, Antennas Propag., Vol. 10, No. 10, 850-855, 2016.
doi:10.1049/iet-map.2015.0653

11. Liu, L. G., P. F. Guo, J. J. Huang, W. W. Wu, J. J. Mo, Y. Q. Fu, and N. C. Yuan, "Design of an invisible radome by metamaterial absorbers loaded with lumped resistors," Chin. Phys. Lett., Vol. 29, No. 1, 012101, 2012.
doi:10.1088/0256-307X/29/1/012101

12. Zhou, H., L. Yang, S. Qu, K. Wang, J. Wang, H. Ma, and Z. Xu, "Experimental demonstration of an absorptive/transmissive FSS with magnetic material," IEEE Antennas Wireless Propag. Lett., Vol. 13, 114-117, 2014.
doi:10.1109/LAWP.2013.2296992

13. Li, B. and Z. X. Shen, "Wideband 3D frequency selective rasorber," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6536-6541, 2014.
doi:10.1109/TAP.2014.2361892

14. Chen, Q., J. J. Bai, L. Chen, and Y. Q. Fu, "A miniaturized absorptive frequency selective surface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 80-83, 2015.
doi:10.1109/LAWP.2014.2355252

15. Chen, X., Y. Q. Li, Y. Q. Fu, and N. C. Yuan, "Design and analysis of lumped resistor loaded metamaterial absorber with transmission band," Opt. Express, Vol. 20, No. 27, 28347-28352, 2012.
doi:10.1364/OE.20.028347

16. Chen, Q., L. Chen, J. J. Bai, and Y. Q. Fu, "Design of absorptive frequency selective surface with good transmission at high frequency," Electron. Lett., Vol. 51, No. 12, 885-886, 2015.
doi:10.1049/el.2015.0228

17. Chen, Q., L. G. Liu, L. Chen, J. J. Bai, and Y. Q. Fu, "Absorptive frequency selective surface using parallel LC resonance," Electron. Lett., Vol. 52, No. 6, 418-419, 2016.
doi:10.1049/el.2015.3885

18. Chen, Q., S. L. Yang, J. J. Bai, and Y. Q. Fu, "Design of absorptive/transmissive frequency-selective surface based on parallel resonace," IEEE Trans. Antennas Propag., Vol. 65, No. 9, 4897-4902, 2017.
doi:10.1109/TAP.2017.2722875