Vol. 80
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-03-21
A Magic-T Integrated 5.8-GHz Repeater Array Antenna Using Dual-Feed Network
By
Progress In Electromagnetics Research M, Vol. 80, 1-11, 2019
Abstract
In this paper, a novel high-gain repeater antenna integrating a dual-feed network is proposed to receive and transmit RF signals separately by two ports. The proposed array antenna has four linearly polarized microstrip antenna elements, two feed networks, and one planar magic-T. The distance between the elements of the array antenna is matched to obtain the minimum sidelobe level and maximum half-power beamwidth for transmitting and receiving purpose. The planar magic-T is effectively used to meet two different bi-directional radiation patterns with a simple structure. Performances of the array antenna are experimentally confirmed, and the gain of the antenna for each port is better than 10.3 dBi. The measured 10-dB impedance bandwidth of the antenna is wider than 580 MHz (10%).
Citation
Thet Paing Phyoe, Eisuke Nishiyama, and Ichihiko Toyoda, "A Magic-T Integrated 5.8-GHz Repeater Array Antenna Using Dual-Feed Network," Progress In Electromagnetics Research M, Vol. 80, 1-11, 2019.
doi:10.2528/PIERM19011201
References

1. Choi, J.-Y., M.-S. Hur, Y.-W. Suh, J.-S. Baek, Y.-T. Lee, and J.-S. Seo, "Interference cancellation techniques for digital on-channel repeaters in T-DMB system," IEEE Trans. Broadcast., Vol. 57, No. 1, 46-56, 2011.
doi:10.1109/TBC.2010.2094314

2. Yang, X., W. Lu, N. Wang, K. Nieman, C.-K. Wen, C. Zhang, S. Jin, X. Mu, I. Wong, Y. Huang, and X. You, "Design and implementation of a TDD-based 128-antenna massive MIMO prototype system," China Communications, Vol. 14, No. 12, 162-187, 2017.
doi:10.1109/CC.2017.8246333

3. Yang, Z., X. Zhang, X. Teng, Z. Zhang, S. Li, and Y. Wang, "A novel low profile box-shaped antenna for a repeater system," Proc. 2012 the 10th Int’l Symp. Antennas Propag. and EM Theory (ISAPE), 93-96, Xi'an, China, 2012.
doi:10.1109/ISAPE.2012.6408716

4. Komaki, K. and H. Iwasaki, "Back to back patch antenna operated orthogonal polarization for repeater use," Proc. 2015 Int’l Symp. Antennas Propag. (ISAP), 1-2, Tasmania, Australia, 2015.

5. Duan, Z., L.-J. Xu, and W. Geyi, "Metal frame repeater antenna with partial slotted ground for bandwidth enhancement of wristband devices," IET Microw. Antennas Propag., Vol. 11, No. 10, 1438-1444, 2017.
doi:10.1049/iet-map.2016.1000

6. Lee, Y., J. Ha, and J. Choi, "Design of a wideband indoor repeater antenna with high isolation for 3G systems," IEEE Antennas Wireless Propag. Lett., Vol. 9, 697-700, 2010.
doi:10.1109/LAWP.2010.2057236

7. Sarabandi, K. and Y. J. Song, "Subwavelength radio repeater system utilizing miniaturized antennas and metamaterial channel isolator," IEEE Trans. Antennas Propag., Vol. 59, No. 7, 2683-2690, 2011.
doi:10.1109/TAP.2011.2152320

8. Song, Y. J. and K. Sarabandi, "Miniaturized radio repeater for enhanced wireless connectivity of Ad-Hoc networks," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3913-3920, 2012.
doi:10.1109/TAP.2012.2201124

9. Lee, Y., J. Ha, and J. Choi, "Design of an indoor repeater antenna with high isolation using metamaterials," Microwave and Optical Tech. Lett., Vol. 54, No. 3, 755-761, 2012.
doi:10.1002/mop.26651

10. Ko, J.-H., G.-K. Kim, S.-Y. Rhee, and J.-I. Lee, "800 MHz band dual-fed ICS repeater antenna with high isolation," Journal Korea Inst. Inf. Commun. Eng. (Korean Edition), Vol. 20, No. 5, 867-873, 2016.
doi:10.6109/jkiice.2016.20.5.867

11. Safaai-jazi, A. and W. L. Stutzman, "A new low sidelobe pattern synthesis technique for equally spaced linear arrays," IEEE Trans. Antennas and Propag., Vol. 64, No. 4, 1317-1324, 2016.
doi:10.1109/TAP.2016.2526084

12. Cesar, C. G., I. Santamaria, J. Via, E. M. Gomez, and T. S. Paules, "Robust array beamforming with sidelobe control using support vector machines," IEEE Trans. Signal Process., Vol. 55, No. 2, 574-584, 2007.
doi:10.1109/TSP.2006.885720

13. Mikunide, A. and M. Fujimoto, "Specific area communication system using binomial coefficient array," Proc. 2017 Int’l Symp. Antennas Propag. (ISAP), 1-2, Phuket, Thailand, 2017.

14. Phyoe, T. P., E. Nishiyama, and I. Toyoda, "A 5-8-GHz dual-axis monopulse microstrip array antenna using dual-feed network," Proc. 2018 Asia-Pacific Microw. Conf. (APMC), 1549-1551, Kyoto, Japan, 2018.

15. Phyoe, T. P., E. Nishiyama, and I. Toyoda, "A circularly polarized dual-axis wide-angle rectenna employing a dual-feed array antenna with inclined patches," Progress In Electromagnetics Research M, Vol. 77, 135-145, 2019.
doi:10.2528/PIERM18100505