PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 81 > pp. 13-20

UNIMODULAR MAGNETOELECTRIC MEDIA

By A. H. Sihvola and I. V. Lindell

Full Article PDF (160 KB)

Abstract:
This article introduces a new class of electromagnetic materials: unimodular media. Unimodular media are magnetoelectric bi-isotropic media for which the determinant of the normalized four-parameter constitutive material matrix is unity. As special cases of such media are perfect electric conductor, perfect magnetic conductor, perfect electromagnetic conductor, simple skewon media, and simple isotropic media with unit refractive index. The essential parameters in the description of unimodular media (strength of impedance, degree of magnetoelectricity, angle of reciprocity) allow for illuminating visualizations of this class of materials.

Citation:
A. H. Sihvola and I. V. Lindell, "Unimodular Magnetoelectric Media," Progress In Electromagnetics Research M, Vol. 81, 13-20, 2019.
doi:10.2528/PIERM19020703

References:
1. Frohlich, H., Theory of Dielectrics: Dielectric Constant and Dielectric Loss, Oxford University Press, 1987.

2. Milton, G. W., Theory of Composites, Cambridge University Press, UK, 2002.
doi:10.1017/CBO9780511613357

3. Zouhdi, S., A. Sihvola, and M. Arsalane, Advances in Electromagnetics of Complex Media and Metamaterials, NATO Science Series: II: Mathematics, Physics, and Chemistry, Vol. 89, 504, Kluwer Academic Publishers, Dordrecht, 2003.

4. Capolino, F., Metamaterials Handbook, Theory and Phenomena of Metamaterials, CRC Press, Boca Raton, Florida, 2009.

5. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, Norwood, Massachusetts, 1994.

6. Lindell, I. V., Methods for Electromagnetic Field Analysis, Wiley and IEEE Press, New York, 1995.

7. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE/IET Publishing, London, UK, 1999.
doi:10.1049/PBEW047E

8. Lindell, I. V., A. H. Sihvola, and K. Suchy, "Six-vector formalism in electromagnetics of bi-anisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 7/8, 887-903, 1995.
doi:10.1163/156939395X00631

9. Born, M. and E. Wolf, Principles of Optics, 7th (expanded) Ed., Fourth printing, Cambridge University Press, 2006.

10. Goldstein, H., Classical Mechanics, 2nd Ed., Addison-Wesley, Reading, Mass., 1981.

11. Uslenghi, P. L. E., "Exact scattering by isorefractive bodies," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 9, 1382-1385, September 1997.
doi:10.1109/8.623127

12. Sihvola, A. and I. V. Lindell, "PEMC, simple Skewon, and Minkowskian isotropic media: Classification of bi-isotropic metamaterials," Proceedings of the XXXI General Assembly and Scientific Symposium of the International Union of Radio Science (URSI), Beijing, China, August 17–23, 2014, file BD01.5.pdf, https://doi.org/10.1109/URSIGASS.2014.6929220.

13. Lindell, I. V. and A. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741

14. Hehl, F. W. and Y. N. Obukhov, Foundations of Classical Electrodynamics, Birkhäuser, Boston, 2003.
doi:10.1007/978-1-4612-0051-2

15. Paiva, C. R. and S. A. Matos, "Minkowskian isotropic media and the perfect electromagnetic conductor," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3231-3245, 2012.
doi:10.1109/TAP.2012.2196929

16. Lindell, I. V., Differential Forms in Electromagnetics, IEEE Press and Wiley, Piscataway, NJ, 2004.
doi:10.1002/0471723096

17. Lindell, I. V., Multiforms, Dyadics, and Electromagnetic Media, IEEE Press and Wiley, Hoboken, NJ, 2015.

18. Lindell, I. V. and A. Sihvola, "Simple skewon medium realization of DB boundary conditions," Progress In Electromagnetics Research Letters, Vol. 30, 29-39, 2012.
doi:10.2528/PIERL11121802

19. Deschamps, G. A., "Electromagnetics and differential forms," Proceedings of the IEEE, Vol. 69, No. 6, 676-696, June 1981.
doi:10.1109/PROC.1981.12048

20. Sihvola, A. H. and I. V. Lindell, "Bi-isotropic constitutive relations," Microwave and Optical Technology Letters, Vol. 4, No. 8, 295-297, July 1991.
doi:10.1002/mop.4650040805

21. Sihvola, A., "Polarizability of a tri-isotropic sphere," Physical Review E, Vol. 64, 046609, 2001.
doi:10.1103/PhysRevE.64.046609


© Copyright 2010 EMW Publishing. All Rights Reserved