Vol. 81
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-06-13
Multi-Objective Optimization Design of Magnetic Bearing Based on Genetic Particle Swarm Optimization
By
Progress In Electromagnetics Research M, Vol. 81, 181-192, 2019
Abstract
The performance of magnetic bearing is determined by its electromagnetic parameters and mechanical parameters. In order to improve the performance of hybrid magnetic bearing (HMB) to better meet the engineering requirements, which needs to be optimized, a multi-objective optimization method based on genetic particle swarm optimization algorithm (GAPSO) is proposed in this paper to solve the problem that the optimization objectives are not coordinated during the optimization design. By introducing the working principle of HMB, a mathematical model of suspension force is established, and its rationality is verified by the finite-element method. By optimization, the suspension force of the HMB is increased by 18.5%, and the volume is reduced by 22%. The optimization results show that the multi-objective optimization algorithm based on GAPSO can effectively improve the performance of HMB.
Citation
Yukun Sun, Shengjing Yin, Ye Yuan, Yonghong Huang, and Fan Yang, "Multi-Objective Optimization Design of Magnetic Bearing Based on Genetic Particle Swarm Optimization," Progress In Electromagnetics Research M, Vol. 81, 181-192, 2019.
doi:10.2528/PIERM19031904
References

1. Huang, Z., J. Fang, X. Liu, et al. "Loss calculation and thermal analysis of rotors supported by active magnetic bearings for high-speed permanent-magnet electrical machines," IEEE Transactions on Industrial Electronics, Vol. 63, No. 4, 2027-2035, 2016.

2. Santra, T., D. Roy, A. B. Choudhury, and S. Yamada, "Vibration control of a hybrid magnetic bearing using an adaptive sliding mode technique," Journal of Vibration and Control, Vol. 24, No. 10, 1848-1860, 2018.
doi:10.1177/1077546317717884

3. Santra, T., D. Roy, and A. B. Choudhury, "Calculation of passive magnetic force in a radial magnetic bearing using general division approach," Progress In Electromagnetics Research M, Vol. 54, 91-102, 2017.
doi:10.2528/PIERM16120602

4. Han, B., S. Zheng, X. Wang, et al. "Integral design and analysis of passive magnetic bearing and active radial magnetic bearing for agile satellite application," IEEE Transactions on Magnetics, Vol. 48, No. 6, 1959-1966, 2012.
doi:10.1109/TMAG.2011.2180731

5. Nguyen, T. D. and G. Foo, "Sensorless control of a dual-airgap axial flux permanent magnet machine for flywheel energy storage system," IET Electric Power Applications, Vol. 7, No. 2, 140-149, 2013.
doi:10.1049/iet-epa.2012.0048

6. Han, B., S. Zheng, Y. Le, et al. "Modeling and analysis of coupling performance between passive magnetic bearing and hybrid magnetic radial bearing for magnetically suspended flywheel," IEEE Transactions on Magnetics, Vol. 49, No. 10, 5356-5370, 2013.
doi:10.1109/TMAG.2013.2263284

7. Wang, X., D. Zhang, P. Gao, et al. "Structural optimization design of radial magnetic bearing for flywheel energy storage," Mechanical Science and Technology, Vol. 37, No. 7, 1048-1054, 2018.

8. Mitterhofer, H., W. Gruber, and W. Amrhein, "On the high speed capacity of bearingless drives," IEEE Transactions on Industrial Electronics, Vol. 61, No. 6, 3119-3126, 2014.
doi:10.1109/TIE.2013.2272281

9. Moser, R., J. Sandtner, and H. Bleuler, "Optimization of repulsive passive magnetic bearings," IEEE Transactions on Magnetics, Vol. 42, No. 8, 2038-2042, 2006.
doi:10.1109/TMAG.2005.861160

10. Zeisberger, M., T. Habisreuther, D. Litzkendorf, et al. "Optimization of levitation forces in superconducting magnetic bearings," IEEE Transactions on Applied Superconductivity, Vol. 11, No. 1, 1741-1744, 2001.
doi:10.1109/77.920120

11. Sahinkaya, M. N. and A. E. Hartavi, "Variable bias current in magnetic bearings for energy optimization," IEEE Transactions on Magnetics, Vol. 43, No. 3, 1052-1060, 2007.
doi:10.1109/TMAG.2006.888731

12. Lan, Z., X. Yang, F. Wang, et al. "Application for optimal designing of sinusoidal interior permanent magnet synchronous motor by using the Taguchi method," Transactions of China Electrotechnical Society, Vol. 26, No. 12, 37-42, 2011.

13. Rao, J. S. and R. Tiwari, "Optimum design and analysis of axial hybrid magnetic bearings using multi-objective genetic algorithms," International Journal for Computational Methods in Engineering Science & Mechanics, 10-27, 2012.
doi:10.1080/15502287.2011.636786

14. Liu, X. and B. Han, "The multiobjective optimal design of a two-degree-of-freedom hybrid magnetic bearing," IEEE Transactions on Magnetics, Vol. 50, No. 9, 1-14, 2014.
doi:10.1109/TMAG.2014.2313315

15. Han, B., Q. Xu, and Q. Yuan, "Multiobjective optimization of a combined radial-axial magnetic bearing for magnetically suspended compressor," IEEE Transactions on Industrial Electronics, Vol. 63, No. 4, 2284-2293, 2016.

16. Kennedy, J. and R. Eberhaa, "Particle swarm optimization," IEEE Int. Confon. Neural Networks, 1942-1948, IEEE, Perth, USA, 1995.

17. Zhang, Y., D. Gong, and Y. Jiang, "Barebones particle swarm for multi-objective optimization problems," International Journal of Innovative Computing & Applications, Vol. 2, No. 2, 86-99, 2009.
doi:10.1504/IJICA.2009.031779

18. Trelea, I. C., "The particle swarm optimization algorithm: Convergence analysis and parameter selection," Information Processing Letters, Vol. 85, No. 6, 317-325, 2003.
doi:10.1016/S0020-0190(02)00447-7

19. Eberhart, R. and J. Kennedy, "A new optimizer using particle swarm theory," Proceedings of the 16th International Symposium on Micro Machine and Human Science, 39-43, Nagoya, Japan, 1995.

20. Zhao, X., Z. Deng, and B. Wang, "Parameter design and realization of permanent magnet biased heterploar radial magnetic bearing," Transactions of China Electrotechnical Society, Vol. 27, No. 7, 131-138, 2012.

21. Zhu, H., Z. Deng, S. Yuan, et al. "The working principle and parameter design permanent magnet biased radial-axial direction magnetic bearing," Proceedings of the CSEE, Vol. 22, No. 9, 54-58, 2002.

22. Fang, J., C. Wang, and T. Wen, "Design and optimization of a radial hybrid magnetic bearing with separate poles for magnetically suspended inertially stabilized platform," IEEE Transactions on Magnetics, Vol. 50, No. 5, 1-11, 2014.
doi:10.1109/TMAG.2013.2293482