Vol. 81
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-05-24
Small-Size Broadband Coding Metasurface for RCS Reduction Based on Particle Swarm Optimization Algorithm
By
Progress In Electromagnetics Research M, Vol. 81, 97-105, 2019
Abstract
Radar cross section (RCS) reduction technology has great significance in stealth and other fields. A PSO-FSP algorithm is proposed based on the particle swarm optimization algorithm and the far-field scattering characteristics of coding metasurface to obtain the optimized coding sequence for RCS reduction. According to the principle of coding metamaterial, a 1 bit cell structure is designed. Therefore, a coding metasurface is constructed by arranging the unit cells based on the optimized coding sequence. Simulation results show that, in the case of vertical incidence, compared with metal plates of the same size, the metasurface can achieve more than 10 dB of RCS reduction within the broadband range from 15 GHz to 35 GHz, and the maximum reduction can reach 36 dB. The proposed coding metasurface has been successfully fabricated and measured, and there is a good agreement between simulated and measured results.
Citation
Honggang Hao, Shimiao Du, and Ting Zhang, "Small-Size Broadband Coding Metasurface for RCS Reduction Based on Particle Swarm Optimization Algorithm," Progress In Electromagnetics Research M, Vol. 81, 97-105, 2019.
doi:10.2528/PIERM19040905
References

1. Knott, E. F., J. Shaeffer, and M. Tuley, Radar Cross Section, Sci. Tech. Publishing, 2004.
doi:10.1049/SBRA026E

2. Chen, J., Q. Cheng, J. Zhao, D. S. Dong, and T.-J. Cui, "Reduction of radar cross section based on a metasurface," Progress In Electromagnetics Research, Vol. 146, 71-76, 2014.
doi:10.2528/PIER14022606

3. Chen, C., Z. Li, L. Liu, J. Xu, P. Ning, B. Xu, X. Chen, and C. Q. Gu, "A circularly-polarized metasurfaced dipole antenna with wide axial-ratio beamwidth and RCS reduction functions," Progress In Electromagnetics Research, Vol. 154, 79-85, 2015.
doi:10.2528/PIER15092401

4. Jiang, W., Y. Xue, and S.-X. Gong, "Polarization conversion metasurface for broadband radar cross section reduction," Progress In Electromagnetics Research Letters, Vol. 62, 9-15, 2016.
doi:10.2528/PIERL16060504

5. Cui, T. J., M. Q. Qi, X. Wan, et al. "Coding metamaterials, digital metamaterials and programmable metamaterials," Light Science & Applications, Vol. 3, No. 10, e2181-9, 2014.
doi:10.1038/lsa.2014.99

6. Xiao, L., J. Gao, L. Xu, et al. "A coding diffuse metasurface for RCS reduction," IEEE Antennas & Wireless Propagation Letters, Vol. 16, 724-727, 2017.

7. Zhao, Y., X. Cao, J. Gao, et al. "Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm," Scientific Reports, Vol. 6, 238961-9, 2016.

8. Sun, H., C. Gu, X. Chen, et al. "Broadband and broad-angle polarization-independent metasurface for radar cross section reduction," Scientific Reports, Vol. 7, 407821-9, 2017.

9. Si, J. L., Y. C. Xiang, M. X. Li, et al. "Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm," Scientific Reports, Vol. 5, 374091-12, 2016.

10. Sui, S., H. Ma, J. Wang, et al. "Absorptive coding metasurface for further radar cross section reduction," Journal of Physics D: Applied Physics, Vol. 51, No. 6, 0656031-6, 2017.

11. Zhou, Y., X. Y. Cao, J. Gao, et al. "RCS reduction for grazing incidence based on coding metasurface," Electronics Letters, Vol. 53, No. 20, 1381-1383, 2017.
doi:10.1049/el.2017.2414

12. Wang, K., J. Zhao, Q. Cheng, et al. "Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm," Scientific Reports, Vol. 4, No. 4, 59351-6, 2014.

13. Su, J., Y. Lu, H. Zhang, et al. "Ultra-wideband, wide angle and polarization-insensitive specular reflection reduction by metasurface based on parameter-adjustable meta-atoms," Scientific Reports, Vol. 7, 422831-11, 2017.

14. Su, J., H. He, Z. Li, et al. "Uneven-layered coding metamaterial tile for ultra-wideband RCS reduction and diffuse scattering," Scientific Reports, Vol. 8, No. 1, 81821-9, 2018.

15. Su, J., Y. Lu, Z. Zheng, et al. "Fast analysis and optimal design of metasurface for wideband monostatic and multistatic radar stealth," Journal of Applied Physics, Vol. 120, No. 20, 2051071-11, 2016.
doi:10.1063/1.4968788

16. Gao, X., X. Han, W. P. Cao, et al. "Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces," IEEE Transactions on Antennas & Propagation, Vol. 63, No. 8, 3522-3530, 2015.
doi:10.1109/TAP.2015.2434392

17. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proc. of 1995 IEEE Int. Conf. Neural Networks, Vol. 4, No. 8, 1942-1948, 2011.