Vol. 88
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-01
Anomalous Extinction Efficiency of Two Dimensional Particles in the Visible
By
Progress In Electromagnetics Research M, Vol. 88, 45-52, 2020
Abstract
In this article we theoretically investigate the visible extinction efficiency that can be obtained using a two dimensional particle. We show that extinction efficiencies up to the upper limit can be obtained from two dimensional particles (thin circular disks or flakes) compared with one dimensional (fibers) and three dimensional particles (spheres). Features of the theory of electromagnetic extinction by thin circular disks are thoroughly investigated for wide size and material contents parameters in the visible. The results of this article are of importance for the search of efficient aerosol attenuative candidates in the visible spectral region.
Citation
Sharhabeel Alyones, Charles W. Bruce, and Michael Granado, "Anomalous Extinction Efficiency of Two Dimensional Particles in the Visible," Progress In Electromagnetics Research M, Vol. 88, 45-52, 2020.
doi:10.2528/PIERM19101003
References

1. Waterman, P. C., "Scattering, absorption, and extinction by thin fibers," J. Opt. Soc. Am. A, Vol. 22, 2430, 2005.
doi:10.1364/JOSAA.22.002430

2. Alyones, S., C. W. Bruce, and A. K. Buin, "Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire," IEEE Trans. Antennas Propag., Vol. 55, 1856, 2007.
doi:10.1109/TAP.2007.898579

3. Alyones, S. and C. W. Bruce, "Electromagnetic scattering and absorption by randomly oriented fibers," J. Opt. Soc. A, Vol. 32, 6, 2015.
doi:10.1364/JOSAA.32.001101

4. Jain, P. K., K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model," J. Phys. Chem. B, Vol. 110, 7238, 2006.
doi:10.1021/jp057170o

5. Lee, K. S. and M. A. El-Sayed, "Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index," J. Phys. Chem. B, Vol. 109, 20331, 2005.
doi:10.1021/jp054385p

6. Chang, W. S., J. W. Ha, L. S. Slaughter, and S. Link, "Plasmonic nanorod absorbers as orientation sensors," Proc. Natl. Acad. Sci., Vol. 107, 2781, USA, 2010.
doi:10.1073/pnas.0910127107

7. Bruce, C. W. and S. Alyones, "Extinction efficiencies for metallic fibers in the infrared," Appl. Opt., Vol. 48, 5095, 2009.
doi:10.1364/AO.48.005095

8. Bruce, C. W. and S. Alyones, "Visible and infrared optical properties of stacked cone graphite microtubes," Appl. Opt., Vol. 51, 3250, 2012.
doi:10.1364/AO.51.003250

9. Bruce, C. W., A. V. Jelinek, S. Wu, S. Alyones, and Q. S. Wang, "Millimeter-wavelength investigation of fibrous aerosol absorption and scattering properties," Appl. Opt., Vol. 43, 6648, 2004.
doi:10.1364/AO.43.006648

10. Gurton, K. P. and C. W. Bruce, "Parametric study of the absorption cross-section for a moderately conducting thin cylinder," Appl. Opt., Vol. 34, 2822, 1995.
doi:10.1364/AO.34.002822

11. Jelinek, A. V. and C.W. Bruce, "Extinction spectra of high-conductivity fibrous aerosols," J. Appl. Phys., Vol. 78, 2675, 1995.
doi:10.1063/1.360129

12. Hart, M. and C. W. Bruce, "Backscatter measurements of thin nickel-coated graphite fibers," IEEE Trans. Antennas Propag., Vol. 48, 842, 2000.
doi:10.1109/8.855506

13. Willis, T. M. and H.Weil, "Disk scattering and absorption by an improved computational method," Appl. Opt., Vol. 26, 18, 1987.
doi:10.1364/AO.26.003987

14. Hanarp, P., M. Kall, and D. S. Sutherland, "Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography," J. Phys. Chem. B, Vol. 107, 5768, 2003.
doi:10.1021/jp027562k

15. Li, N., Q. Zhang, S. Quinlivan, J. Goebl, Y. Gan, and Y. Yin, "H2O2-aided seed-mediated synthesis of silver nanoplates with improved yield and efficiency," Chem. Phys. Chem., Vol. 13, No. 10, 2526-2530, 2012.
doi:10.1002/cphc.201101018

16. Langhammer, C., Z. Yuan, and I. Zoric B. Kasemo, "Plasmonic properties of supported Pt and Pd nanostructures," Nano Lett., Vol. 6, 833, 2006.
doi:10.1021/nl060219x

17. Anquillare, E. L., O. D. Miller, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, S. G. Johnson, and M. Soljacic, "Efficient, designable, and broad-bandwidth optical extinction via aspect-ratio-tailored silver nanodisks," Optics Express, Vol. 24, No. 10, 10806, 2016.
doi:10.1364/OE.24.010806

18. Shepherd, J. W. and A. R. Holt, "The scattering of electromagnetic-radiation from finite dielectric circular-cylinder," J. Phys. A, Vol. 16, 65, 1983.

19. DeVore, R., D. B. Hodge, and R. G. Kouyoumjian, "Backscattering cross sections of circular disks for arbitrary incidence," J. Appl. Phys., Vol. 42, 3075, 1971.
doi:10.1063/1.1660688

20. Le Vine, D. M., A. Schneider, R. H. Lang, and H. G. Carter, "Scattering from thin dielectric disks," IEEE Trans. Antennas. Propag., Vol. 33, 1410, 1985.
doi:10.1109/TAP.1985.1143534

21. Venner, M. J. and C. W. Bruce, "Absorption cross section of moderately conducting disks at 35 GHz," Appl. Opt., Vol. 37, No. 30, 7143, 1998.
doi:10.1364/AO.37.007143

22. Mie, G., Annalen der Physik, Vol. 330, No. 3, 377, 1908.

23. Bohren, F. C. and D. R. Huffmann, Absorption and Scattering of Light by Small Particles, Wiley- Interscience, New York, 2010.

24. Van de Hulst, H. C., "Light Scattering by Small Particles," John Wiley and Sons, New York, 1957.

25. Gustafsson, M., C. Sohl, and G. Kristensson, "On the spectral efficiency of a sphere," Proc. R. Soc. A, Vol. 463, 2589, 2007.
doi:10.1098/rspa.2007.1893

26. Qiu, W., B. G. Delacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, "Optimization of broadband optical response of multilayer nanospheres," Opt. Express, Vol. 20, 18494, 2012.
doi:10.1364/OE.20.018494

27. Miller, O. D., A. G. Polimeridis, M. T. H. Reid, C. W. Hsu, B. G. Delacy, J. D. Joannopoulos, M. Soljacic, and S. G. Johnson, "Fundamental limits to optical response in absorptive systems," Optics Express, Vol. 24, No. 4, 2016.
doi:10.1364/OE.24.003329

28. Miller, O. D., C. W. Hsu, M. T. H. Reid, W. Qiu, B. G. DeLacy, J. D. Joannopoulos, M. Soljacic, and S. G. Johnson, "Fundamental limits to extinction by metallic nanoparticles," Physical Review Letters, Vol. 112, 123903, 2014.
doi:10.1103/PhysRevLett.112.123903

29. Hlaing, M., B. Gebear-Eigzabher, A. Roa, A. Marcano, D. Radu, and C.-Y. Lai, "Absorption and scattering cross-section extinction values of silver nanoparticles," Optical Materials, Vol. 58, 439-444, 2016.
doi:10.1016/j.optmat.2016.06.013

30. Kuznetsov, A. I., A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, "Optically resonant dielectric nanostructures," Science, Vol. 354, 2472, 2016.
doi:10.1126/science.aag2472

31. Optical Constants of Bulk Materials and Films, Adam Hilger, 1988.

32. Ordal, M. A., L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Applied Optics, Vol. 22, No. 7, 1099, 1983.
doi:10.1364/AO.22.001099

33., https://refractiveindex.info/Aspnes and Studna 1983.