Vol. 88
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-13
An Iterative Threshold Algorithm Based on Log-Sum Norm Regularization for Magnetic Resonance Image Recovery
By
Progress In Electromagnetics Research M, Vol. 88, 121-131, 2020
Abstract
This paper considers the class of Iterative Shrinkage Threshold Algorithm (ISTA) to solve the linear inverse problem that occurs in magnetic resonance (MR) image recovery. The ISTA algorithm adheres to the principle of minimizing the L1 norm. This method can be considered as an extension of the classical gradient algorithm. However, it is known that the ISTA algorithm converges slowly, and the accuracy of the algorithm is not sufficient. In many MR image recovery problems, using non-convex log-sum norm minimization can often obtain better results than the l1-norm minimization. In this paper, we firstly transform the MR image recovery into a non-convex optimization problem with log-sum norm regularization and combine it with a faster global convergence method. Then a Log-sum generalized iterated shrinkage threshold algorithm (LISTA) for solving the MR image recovery problem is proposed. Finally, numerical experiments are conducted to show the superiority of our algorithm.
Citation
Linyu Wang, Ming Qi He, Jianhong Xiang, and Peng Fei Ye, "An Iterative Threshold Algorithm Based on Log-Sum Norm Regularization for Magnetic Resonance Image Recovery," Progress In Electromagnetics Research M, Vol. 88, 121-131, 2020.
doi:10.2528/PIERM19110303
References

1. Daubechies, I., M. Defrise, and C. D. Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," Communications on Pure and Applied Mathematics, Vol. 57, No. 11, 1413-1457, 2004.
doi:10.1002/cpa.20042

2. Beck, A. and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM Journal on Imaging Sciences, Vol. 2, No. 1, 183-202, 2009.
doi:10.1137/080716542

3. Bioucasdias, J. M. and M. A. Figueiredo, "A new twist: Two-step iterative shrinkage/thresholding algorithms for image restoration," IEEE Transactions on Image Processing, Vol. 16, No. 12, 2992-3004, 2007.
doi:10.1109/TIP.2007.909319

4. Zuo, W., et al. "A generalized iterated shrinkage algorithm for non-convex sparse coding," Proceedings of the IEEE International Conference on Computer Vision, 2013.

5. Wang, P., P. Duan, and S. Xiong, "Image deblurring via fast generalized iterative shrinkage thresholding algorithm for lp regularization," Journal of Wuhan University (Natural Science Edition), 2017.

6. Chartrand, R. and W. Yin, "Iteratively reweighted algorithms for compressive sensing," Acoustics, Speech and Signal Processing, 2008.

7. Zeng, J., et al. "Regularization: Convergence of iterative half thresholding algorithm," IEEE Transactions on Signal Processing, Vol. 62, No. 9, 2317-2329, 2013.
doi:10.1109/TSP.2014.2309076

8. Cho, S., J. Wang, and S. Lee, "Handling outliers in non-blind image deconvolution," International Conference on Computer Vision IEEE Computer Society, 2011.

9. Dong, J., et al. "Blind image deblurring with outlier handling," IEEE International Conference on Computer Vision (ICCV) IEEE, 2017.

10. Rostami, M., O. Michailovich, and Z.Wang, "Image deblurring using derivative compressed sensing for optical imaging application," IEEE Transactions on Image Processing, Vol. 21, No. 7, 3139-3139, 2012.
doi:10.1109/TIP.2012.2190610

11. Yin, X., L. Wang, H. Yue, and J. Xiang, "A new non-convex regularized sparse reconstruction algorithm for compressed sensing magnetic resonance image recovery," Progress In Electromagnetics Research C, Vol. 87, 241-253, 2018.
doi:10.2528/PIERC18072101

12. Rao, B. D. and K. Kreutz-Delgado, "An affine scaling methodology for best basis selection," IEEE Transactions on Signal Processing, Vol. 47, No. 1, 187-200, 2002.
doi:10.1109/78.738251

13. Shen, Y., J. Fang, and H. Li, "Exact reconstruction analysis of log-sum minimization for compressed sensing," IEEE Signal Processing Letters, Vol. 20, No. 12, 1223-1226, 2013.
doi:10.1109/LSP.2013.2285579

14. Deng, Y., et al. "Low-rank structure learning via log-sum heuristic recovery," 5th Pacific Rim Conference on Multimedia, 1012-1919, Mathematics, 2010.

15. Candes, E. and T. Tao, "Near optimal signal recovery from random projections: Universal encoding strategies," IEEE Trans. Inf. Theory, Vol. 52, No. 12, 5406-5425, 2006.
doi:10.1109/TIT.2006.885507

16. Donoho, D. L., "For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution," Communications on Pure and Applied Mathematics, Vol. 59, No. 7, 907-C934, 2006.
doi:10.1002/cpa.20131