Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 92 > pp. 157-167


By V. Salonikios, M. Nitas, S. Raptis, and T. V. Yioultsis

Full Article PDF (361 KB)

We present a three-dimensional finite element (FEM) field-flux eigenmode formulation, able to provide accurate modeling of the propagation characteristics of periodic structures featuring graphene. The proposed formulation leads to a linear eigenmode problem, where the effective refractive index is an unknown eigenvalue; the electric field intensity and magnetic flux density are the state variables; and graphene's contribution is efficiently incorporated via a finite conductivity boundary condition. The FEM formulation is spurious-mode free and capable of providing accurate dispersion diagrams and field distributions for arbitrary propagation directions, as opposed toother analytical or numerical approaches, while also efficiently dealing with graphene's dispersive nature. The novelty of the presented approximation is substantiated by computational results for structures incorporating graphene of random periodicity, both within passbands and bandgap frequencies.

V. Salonikios, M. Nitas, S. Raptis, and T. V. Yioultsis, "Computational Analysis of Graphene-Based Periodic Structures via a Three-Dimensional Field-Flux Eigenmode Finite Element Formulation," Progress In Electromagnetics Research M, Vol. 92, 157-167, 2020.

1. Nikitin, A. Y., F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, "Edge and waveguide terahertz surface plasmon modes in graphene microribbons," Phys. Rev. B, Vol. 84, 161407, 2011.

2. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, 10927-10940, 2014.

3. Vicarelli, L., M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, "Graphene field-effect transistors as room-temperature terahertz detectors," Nat. Mater., Vol. 11, 865-871, 2012.

4. Tomadin, A., A. Tredicucci, V. Pellegrini, M. S. Vitiello, and M. Polini, "Photocurrent-based detection of terahertz radiation in graphene," Appl. Phys. Lett., Vol. 103, 211120, 2013.

5. Spirito, D., D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, "High performance bilayer-graphene terahertz detectors," Appl. Phys. Lett., Vol. 104, 061111, 2014.

6. Koppens, F. H. L., T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, "Photodetectors based on graphene, other two-dimensional materials and hybrid systems," Nat. Nanotechnol., Vol. 9, 780-793, 2014.

7. Politano, A., H. K. Yu, D. Farías, and G. Chiarello, "Multiple acoustic surface plasmons in graphene/Cu(111) contacts," Phys. Rev. B, Vol. 97, 035414, 2018.

8. Politano, A., I. Radović, D. Borka, Z. L. Mišković, H. K. Yude, D. Farías, and G. Chiarello, "Dispersion and damping of the interband π plasmon in graphene grown on Cu(111) foils," Carbon, Vol. 114, 70-76, 2017.

9. Politano, A., I. Radović, D. Borka, Z. L. Mišković, and G. Chiarello, "Interband plasmons in supported graphene on metal substrates: Theory and experiments," Carbon, Vol. 96, 91-97, 2016.

10. Politano, A., A. R. Marino, V. Formoso, D. Farías, R. Miranda, and G. Chiarello, "Quadratic dispersion and damping processes of π plasmon in monolayer graphene on Pt(111)," Plasmonics, Vol. 7, 369-376, 2012.

11. Politano, A., A. R. Marino, V. Formoso, D. Farías, R. Miranda, and G. Chiarello, "Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111)," Phys. Rev. B, Vol. 84, 033401, 2011.

12. Cupolillo, A., A. Politano, N. Ligato, D. M. Cid Perez, G. Chiarello, and L. S. Caputi, "Substrate-dependent plasmonic properties of supported graphene," Surf. Sci., Vol. 634, 76, 2015.

13. Politano, A., G. Chiarello, and C. Spinella, "Plasmon spectroscopy of graphene and other two-dimensional materials with transmission electron microscopy," Mater. Sci. Semicond. Process., Vol. 65, 88-99, 2017.

14. Ben Rhouma, M., M. Oueslati, and B. Guizal, "Surface plasmons on a doped graphene sheet with periodically modulated conductivity," Superlattices and Microstructures, Vol. 96, 212-219, 2016.

15. Nikitin, A. Yu., F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, "Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons," Phys. Rev. B, Vol. 84, 161407, 2011.

16. Bludov, Y. V., N. M. R. Peres, and M. I. Vasilevskiy, "Graphene-based polaritonic crystal," Phys. Rev. B, Vol. 85, 081405, 2012.

17. Ferreira, A. and N. M. R. Peres, "Complete light absorption in graphene-metamaterial corrugated structures," Phys. Rev. B, Vol. 86, 205401, 2012.

18. Madani, A., S. Zhong, H. Tajalli, S. R. Entezar, A. Namdar, and Y. Ma, "Tunable metamaterials made of graphene-liquid crystal multilayers," Progress In Electromagnetics Research, Vol. 143, 545-558, 2013.

19. Freitag, M., et al., "Photocurrent in graphene harnessed by tunable intrinsic plasmons," Nature Comm., Vol. 4, 1951, 2013.

20. Gómez-Díaz, J. S., M. Esquius-Morote, and J. Perruisseau-Carrier, "Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips," Optics Express, Vol. 21, 24856-24872, 2013.

21. Malhat, H. A., S. H. Zainud-Deen, and S. M. Gaber, "Graphene based transmitarray for terahertz applications," Progress In Electromagnetics Research M, Vol. 36, 185-191, 2014.

22. Juneghani, F. A., A. Z. Nezhad, and R. Safian, "Analysis of diffraction graphene gratings using the C-method and design of a terahertz polarizer," Progress In Electromagnetics Research M, Vol. 65, 175-186, 2018.

23. Nitas, M., C. S. Antonopoulos, and T. V. Yioultsis, "EB eigenmode formulation for the analysis of lossy and evanescent modes in periodic structures and metamaterials," IEEE Trans. Magnetics, Vol. 53, 2017.

24. Monk, P., Finite Element Methods for Maxwell's Equations, Oxford University Press, 2003.

25. Boffi, D., F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, Springer, Heidelberg, 2013.

26. Zhu, Y. and A. C. Cangellaris (eds.), Multigrid Finite Element Methods for Electromagnetic Field Modeling, John Wiley & Sons, 2006.

27. Salonikios, V., S. Amanatiadis, N. Kantartzis, and T. V. Yioultsis, "Modal analysis of graphene microtubes utilizing a two-dimensional vectorial finite element method," Applied Physics A, Vol. 122, 351, 2016.

28. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, 064302, 2008.

29. Gonçalves, P. A. D., E. J. C. Dias, Y. V. Bludov, and N. M. R. Peres, "Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach," Phys. Rev. B, Vol. 94, 195421, 2016.

30. Politano, A. and G. Chiarello, "Emergence of a nonlinear plasmon in the electronic response of doped graphene," Carbon, Vol. 71, 176-80, 2014.

© Copyright 2010 EMW Publishing. All Rights Reserved