Vol. 99

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-12-01

Liquid-Crystal Based, Beam-Steerable Quasi-Periodic Substrate Integrated Waveguide Leaky-Wave Antenna with Transverse Slots

By Rodrigue B. Tchema and Anastasis C. Polycarpou
Progress In Electromagnetics Research M, Vol. 99, 81-90, 2021
doi:10.2528/PIERM20091403

Abstract

In this paper, a substrate integrated waveguide (SIW) quasi-uniform leaky-wave antenna (LWA) is proposed for a dynamically steerable beam design at a single frequency through the use of a thin layer of nematic liquid crystal (LC) underneath the substrate. The orientation of the LC molecules, and therefore the effective dielectric properties of the LC cell, is controlled via an externally low-frequency, low-strength bias voltage. The radiation occurs through a series of closely placed transverse slots etched on the top plane of the SIW. This antenna was designed to operate based on the fundamental space harmonic (n=0) in the frequency range between 24.25 GHz and 29 GHz, which covers one of the future 5G frequency bands to be deployed in some parts of the world. This novel antenna design concept was verified numerically using a commercial software based on the Finite Element Method (FEM), and the results are presented and discussed herein.

Citation


Rodrigue B. Tchema and Anastasis C. Polycarpou, "Liquid-Crystal Based, Beam-Steerable Quasi-Periodic Substrate Integrated Waveguide Leaky-Wave Antenna with Transverse Slots," Progress In Electromagnetics Research M, Vol. 99, 81-90, 2021.
doi:10.2528/PIERM20091403
http://www.jpier.org/PIERM/pier.php?paper=20091403

References


    1. Jackson, D. R. and A. A. Oliner, "Leaky-wave antennas," Modern Antenna Handbook, Chap. 7, C. A. Balanis, ed., Wiley, New Jersey, NJ, USA, 2008.

    2. Oliner, A. A. and D. R. Jackson, "Leaky-wave antennas," Antenna Engineering Handbook, 4th Edition, Chap. 11, J. L. Volakis, ed., McGraw-Hill, NY, USA, 2007.

    3. Che, W., D. Wang, K. Deng, and Y. L. Chow, "Leakage and ohmic losses investigation in substrate-integrated waveguide," Radio Science, Vol. 42, No. 5, 1-8, Oct. 2007.

    4. Xu, F., K. Wu, and X. Zhang, "Periodic leaky-wave antenna for millimeter wave applications based on substrate integrated waveguide," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 340-347, 2010.
    doi:10.1109/TAP.2009.2026593

    5. Monticone, F. and A. Alu, "Leaky-wave theory, techniques, and applications: From microwaves to visible frequencies," Proceedings of the IEEE, Vol. 103, No. 5, 793-821, May 2015.
    doi:10.1109/JPROC.2015.2399419

    6. Liu, J., D. R. Jackson, and Y. Long, "Substrate integrated waveguide (SIW) leaky-wave antenna with transverse slots," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 20-29, Jan. 2012.
    doi:10.1109/TAP.2011.2167910

    7. Oseen, C. W., "The theory of liquid crystals," Trans. Faraday Soc., Vol. 29, 883-898, 1933.
    doi:10.1039/tf9332900883

    8. Frank, F. C., "On the theory of liquid crystals," Discussions of the Faraday Soc., Vol. 25, 19-28, 1958.
    doi:10.1039/df9582500019

    9. Kuki, T., H. Fujikake, H. Kamoda, and T. Nomoto, "Microwave variable delay line using a membrane impregnated with liquid crystal," 2002 IEEE MTT-S International Microwave Symposium Digest, 363-366, Seattle, WA, USA, 2002.

    10. Kuki, T., H. Fujikake, and T. Nomoto, "Microwave variable delay line using dual frequency switching-mode," IEEE Trans. Microw. Theory Tech., Vol. 50, 2604-2609, Nov. 2002.

    11. Dolphi, D., M. Labeyrie, P. Joffre, and J. P. Huignard, "Liquid crystal microwave phase shifter," Electronic Lett., Vol. 29, No. 10, 926-928, May 1993.
    doi:10.1049/el:19930618

    12. Weil, C., S. Muller, P. Scheele, Y. Kryvoshapka, G. Lussem, P. Best, and R. Jakoby, "Ferroelectric-and liquid crystal-tunable microwave phase shifters," 3rd Europ. Micr. Conf., 1431-1434, 2003.

    13. Guo, Z., Y. Liu, T. Yang, Lei, D. Jiang, B. Gan, and W. Cao, "Tunable substrate integrated waveguide bandpass filter using liquid crystal material," 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 763-765, 2016.
    doi:10.1109/ISAPE.2016.7834097

    14. Ding, C., F. Meng, H. Mu, J. Qiao, C. Zhao, Q. Yuan, and Q. Wu, "Design of a filtering tunable liquid crystal phase shifter based on coplanar waveguide and split-ring resonators," Liquid Crystals, Vol. 46, No. 15, 2127-2133, May 2019.
    doi:10.1080/02678292.2019.1613691

    15. Martin, N., P. Laurent, C. Person, P. Gelin, and F. Hubert, "Patch antenna adjustable in frequency using liquid crystal," IEEE 33rd Eur. Microw. Conf., 699-702, Munich, Germany, 2003.
    doi:10.1109/EUMC.2003.177573

    16. Bose, R. and A. Sinha, "Tunable patch antenna using liquid crystal substrate," 2008 IEEE Radar Conference, 1-6, Rome, Italy, 2008.

    17. Shetta, A. and S. F. Mahmouh, "A widely tunable compact patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 7, 40-42, 2008.
    doi:10.1109/LAWP.2008.915796

    18. Missaoui, S. and M. Kaddour, "Tunable microstrip patch antenna based on liquid crystals," 2016 XXIst International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 88-91, Tbilisi, 2016.

    19. Polycarpou, A. C., M. A. Christou, and C. N. Papanicolaou, "Tunable patch antenna printed on a biased nematic liquid crystal cell," IEEE Trans. Antennas Propag., Vol. 62, No. 10, 4980-4987, Oct. 2014.
    doi:10.1109/TAP.2014.2344099

    20. Prasetiadi, A. E., et al., "Constinuously tunable substrate integrated waveguide band pass filter in liquid crystal technology with magnetic biasing," Electronic Lett., Vol. 51, No. 20, 1584-1585, 2015.
    doi:10.1049/el.2015.2494

    21. Li, X., D. Jiang, and H. Yu, "Electrical biasing substrate integrated waveguide tunable band pass filter with liquid crystal technology," Optik, Vol. 14, 718-723, 2017.
    doi:10.1016/j.ijleo.2017.05.005

    22. Fu, Z., D. Jiong, and Y. Liu, "Miniaturized pattern reconfigurable hmsiw leaky-wave antenna based on liquid crystal tuning technology in millimeter wave band," 2019 IEEE MTT-S International Wireless Symposium (IWS), 1-3, Guangzhou, China, 2019.

    23. Tchema, R. B. and A. C. Polycarpou, "Quasi-periodic leaky-wave antenna based on substrate integrated waveguide and liquid crystal technologies," 14th European Conference on Antennas and Propagation (EuCAP), 1-5, Copenhagen, Denmark, 2020.

    24. Bozzi, M., M. Pasian, L. Perregrini, and K.Wu, "On the losses in substrate integrated waveguides," 37th Eur. Microw. Conf., 384-387, 2007.

    25. Cassivi, Y., L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristic of substrate integrated rectangular waveguide," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 9, 333-335, Sept. 2002.
    doi:10.1109/LMWC.2002.803188

    26. Deslandes, W. and K. Wu, "Substrate integrated waveguide leaky-wave antenna: Concept and design considerations," Proc. Asia-Pacific Microwave Conf. (APMC), Suzhou, China, 2005.

    27. Collings, P. J. and M. Hird, Introduction to Liquid Crystals: Chemistry and Physics, 1st Ed., Taylor and Francis, CRC Press, London, 1997.
    doi:10.4324/9780203211199

    28. Khoo, I., Liquid Crystals, 2nd Ed., Wiley, Hoboken, NJ, USA, 2007.
    doi:10.1002/0470084030