Vol. 99

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-11-30

Novel Computational Technique for Time-Dependent Heat Transfer Analysis Using Fast Inverse Laplace Transform

By Seiya Kishimoto, Shohei Nishino, and Shinichiro Ohnuki
Progress In Electromagnetics Research M, Vol. 99, 45-55, 2021
doi:10.2528/PIERM20100203

Abstract

A novel computational technique is proposed for heat conduction analysis. The heat transfer equation is expanded in the complex frequency domain and solved using the finitedifference method (FDM). The results in the complex frequency domain are transformed into the time domain via fast inverse Laplace transform. In the proposed approach, the instantaneous temperature at a specific time can be easily obtained. Moreover, the computational time for the conventional explicit FDM is reduced by employing the time-division parallel computing method.

Citation


Seiya Kishimoto, Shohei Nishino, and Shinichiro Ohnuki, "Novel Computational Technique for Time-Dependent Heat Transfer Analysis Using Fast Inverse Laplace Transform," Progress In Electromagnetics Research M, Vol. 99, 45-55, 2021.
doi:10.2528/PIERM20100203
http://www.jpier.org/PIERM/pier.php?paper=20100203

References


    1. Odajima, W., F. Tawa, and S. Hasegawa, "Optical and thermal simulator for laser-assisted magnetic recording," Opt. Rev., Vol. 14, 180-185, 2007.
    doi:10.1007/s10043-007-0180-4

    2. Challener, W. A., et al., "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nat. Photonics, Vol. 3, 220-224, 2009.
    doi:10.1038/nphoton.2009.26

    3. Wu, X. W., et al., "Finite element analysis of thermal problems in gas-insulated power apparatus with multiple species transport technique," IEEE Trans. Mag., Vol. 50, No. 2, 7007804-1-7007804-4, 2014.

    4. Suga, R., et al., "Analytical study on change of temperature and absorption characteristics of a single-layer radiowave absorberunder irradiation electric power," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 866-871, 2005.
    doi:10.1109/TEMC.2005.854102

    5. Ma, L., et al., "Experimental validation of combined electromagnetic and thermal FDTD model of microwave heating process," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 11, 2565-2572, 1995.
    doi:10.1109/22.473179

    6. Xiong, S. and D. B. Bogy, "Investigation of the local temperature increase for heat assisted magnetic recording (HAMR)," IEEE Trans. Magn., Vol. 50, No. 4, 1-6, 2014.
    doi:10.1109/TMAG.2013.2290760

    7. Voller, V. and M. Cross, "Accurate solutions of moving boundary problems using theenthalpy method," Int. J. Heat Mass. Tran., Vol. 24, No. 3, 545-566, 1981.
    doi:10.1016/0017-9310(81)90062-4

    8. Özişik, M. N., et al., Finite Difference Methods in Heat Transfer, 1st Ed., CRC Press, 2017.
    doi:10.1201/9781315168784

    9. Sadiku, M. N. O., Numerical Techniques in Electromagnetics, 2nd Ed., CRC Press, 2009.

    10. Hosono, T., "Numerical inversion of Laplace transform and some applications to wave optics," Radio Sci., Vol. 16, No. 6, 1015-1019, 1981.
    doi:10.1029/RS016i006p01015

    11. Kishimoto, S., T. Okada, S. Ohnuki, Y. Ashizawa, and K. Nakagawa, "Efficient analysis of electromagnetic fields for designing nanoscale antennas by using a boundary integral equation method with fast inverse Laplace transform," Progress In Electromagnetics Research, Vol. 146, 155-165, 2014.
    doi:10.2528/PIER13081701

    12. Ohnuki, S., et al., "Time-division parallel FDTD algorithm," IEEE Photon. Technol. Lett., Vol. 30, No. 24, 2143-2146, 2018.
    doi:10.1109/LPT.2018.2879365

    13., Japan Society of Thermophysical Properties, Thermophysical Properties Handbook, 1st Ed., Yokendo Co. Ltd., Tokyo, 2008 (in Japanese).