Vol. 102
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-04-10
Time-Domain Analysis for the Coupling Problem of Overhead Lines Above Multilayered Earth
By
Progress In Electromagnetics Research M, Vol. 102, 39-51, 2021
Abstract
This paper investigates the effect of an external plane wave on a Multi-conductor transmission line (MTL) located above a multilayer soil directly in the time domain. An improved finite-difference time-domain (FDTD) method is used, in conjunction with the Vector Fitting (VF), to obtain the recursion relations of voltages and currents along the line by discretizing the equations in time and one-dimensional space. The source terms of the coupling equations are efficiently obtained in the time domain based on the Gaver-Stehfest algorithm. An equivalent model is also established in this work, where the geometry with three conductors is reduced to two conductors. Finally, some examples are presented to illustrate the effect of the soil and the plane wave on the transient.
Citation
Ayoub Lahmidi, and Abderrahman Maaouni, "Time-Domain Analysis for the Coupling Problem of Overhead Lines Above Multilayered Earth," Progress In Electromagnetics Research M, Vol. 102, 39-51, 2021.
doi:10.2528/PIERM21021603
References

1. Tesche, F. M., M. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models, J. Wiley and Sons, Inc., New York, 1997.

2. Doric, V., D. Poljak, and V. Roje, "Electromagnetic field coupling to multiple finite length transmission lines above an imperfect ground," 2003 IEEE International Symposium on Electromagnetic Compatibility, 2003, EMC'03, Vol. 1, 595-598, Istanbul, Turkey, 2003.

3. Rachidi, F., "A review of field to transmission line coupling models with special emphasis to lightning induced voltages on overhead lines," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 4, August 2012.
doi:10.1109/TEMC.2011.2181519

4. Kordi, B., J. Lovetri, and G. E. Bridges, "Finite-difference analysis of dispersive transmission lines within a circuit simulator," IEEE Transactions on Power Delivery, Vol. 21, No. 1, January 2006.
doi:10.1109/TPWRD.2005.855431

5. Barnes, P. R. and F. M. Tesche, "On the direct calculation of a transient plane wave reflected from a finitely conducting half-space," OAK Ridge National Laboratory (Theor. Note 358), December 5, 1990.

6. Antonijevic, S. and D. Poljak, "A novel time-domain reflection coefficient function: TM case," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 6, December 2013.
doi:10.1109/TEMC.2013.2260754

7. Stehfest, H., "Numerical inversion of Laplace transforms algorithm, Algorithm 368," Commun. ACM, Vol. 13, No. 1, 47-49, 1970.
doi:10.1145/361953.361969

8. Lu, T., L. Qi, and X. Cui, "Effect of multilayer soil on the switching transient in substations," IEEE Transactions on Magnetics, Vol. 42, No. 4, 843-846, April 2006.

9. Qi, L., X. Cui, and L. Li, "Transient plane wave coupling to overhead line above a multi-layer soil," 2006 IEEE International Symposium on Electromagnetic Compatibility, 2006, EMC 2006, 669-673, Portland, OR, USA, 2006.

10. Agrawal, A. K., H. J. Price, and S. H. Gurbaxani, "Transient response of multiconductor transmission line excited by a nonuniform electromagnetic field," IEEE Transactions on Electromagnetic Compatibility, Vol. 22, 119-129, 1980.
doi:10.1109/TEMC.1980.303824

11. Born, M., E. Wolf, A. Bhatia, P. Clemmow, D. Gabor, A. Stokes, and W. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th Ed., Cambridge University Press, Cambridge, 1999.
doi:10.1017/CBO9781139644181

12. Nakagawa, N., A. Ametani, and K. Iwamoto, "Further studies on wave propagation in overhead lines with earth return: Impedance of stratified earth," Proc. IEE, Vol. 120, No. 12, 1521-1528, 1973.

13. Sunde, E. D., Earth Conduction Effects in Transmission Systems, 2nd Ed., 99-139, Dover Publications, 1968.

14. Gustavsen, B. and A. Semlyen, "Rational approximation of frequency-domain responses by vector fitting," IEEE Trans. Power Del., Vol. 14, No. 3, 1052-1061, July 1999.
doi:10.1109/61.772353

15. Paul, C. R., Analysis of Multiconductor Transmission Lines, Wiley, New York, 1994.

16. Yee, K., "Numerical Solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

17. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

18. Lahmidi, A., A. Maaouni, and Z. Belganche, "Padé approximation for time-domain plane wave reflected from a lossy earth," J. Phys. Commun., Vol. 2, 105001, 2018.
doi:10.1088/2399-6528/aae232

19. Lahmidi, A. and A. Maaouni, "Time-domain analysis of overhead line in presence of stratified earth," Progress In Electromagnetics Reasearch M, Vol. 88, 133-144, January 2020.
doi:10.2528/PIERM19101503

20. Belganche, Z., A. Maaouni, A. Mzerd, and A. Lahmidi, "Plane wave coupling to overhead lines over stratified earth," 2018 Progress In Electromagnetics Research Symposium (PIERS - Toyama), 2212-2219, Toyama, August 1-4, 2018.

21. Papadopoulos, T. A., G. K. Papagiannis, and D. P. Labridis, "A generalized model for the calculation of the impedances and admittances of overhead power lines above stratified earth," Electric Powers systems Research, Vol. 80, 1160-1170, 2010.
doi:10.1016/j.epsr.2010.03.009