Vol. 104
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-08-18
Electromagnetic Properties of a Babinet-Type Metasurface Composed of Coaxial-Sector Apertures
By
Progress In Electromagnetics Research M, Vol. 104, 81-89, 2021
Abstract
Electromagnetic properties of a planar metallic metasurface with the design inspired by Babinet's principle are numerically studied. The metasurface is constructed from a metal plate perforated by coaxial-sector apertures. It is shown that the chosen coaxial-sector apertures make it possible to obtain a wider operating range of the metasurface than those composed of apertures of other shapes (e.g. round or rectangle). Moreover, the proposed metasurface performs an efficient polarization conversion of the linearly polarized wave to elliptically and circularly polarized ones in the reflected field.
Citation
Alexandr V. Gribovsky, Yuliia V. Antonenko, Yevhenii O. Antonenko, and Viktor A. Katrich, "Electromagnetic Properties of a Babinet-Type Metasurface Composed of Coaxial-Sector Apertures," Progress In Electromagnetics Research M, Vol. 104, 81-89, 2021.
doi:10.2528/PIERM21061302
References

1. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Physical Review Letters, Vol. 93, No. 19, 197401, 2004.
doi:10.1103/PhysRevLett.93.197401

2. Berdnik, S. L., V. A. Katrich, and V. A. Lyaschenko, "Closely spaced transverse slots in rectangular waveguide," Proceedings 4th International Conference on Antenna Theory and Techniques, Sevastopol, Ukraine, September 9-12, 2003.

3. Tuz, V. R., S. L. Prosvirnin, and L. A. Kochetova, "Optical bistability involving planar metamaterials with broken structural symmetry," Physical Review B, Vol. 82, No. 23, 233402, 2010.
doi:10.1103/PhysRevB.82.233402

4. Khardikov, V., P. Mladyonov, S. Prosvirnin, and V. Tuz, "Electromagnetic wave diffraction by periodic planar metamaterials with nonlinear constituents," Chapter 5 in Contemporary Optoelectronics, Springer Series in Optical Sciences, 81-98, 2016.
doi:10.1007/978-94-017-7315-7_5

5. Antonenko, Y. V., Ye. A. Antonenko, and A. V. Gribovsky, "Experimental investigation of frequency-selective properties of metal metasurface supporting a trapped mode resonance," Proceedings Ukrainian Microwave Week, Kharkiv, Ukraine, September 21-25, 2020.

6. Politano, G. G., E. Cazzanelli, C. Versace, C. Vena, M. P. De Santo, M. Castriota, F. Ciuchi, and R. Bartolino, "Graphene oxide on magnetron sputtered silver thin films for SERS and metamaterial applications," Applied Surface Science, Vol. 427, 927-933, 2018.
doi:10.1016/j.apsusc.2017.09.059

7. Sadhukhan, K., A. Politano, and A. Agarwal, "Novel undamped gapless plasmon mode in a tilted Type-II dirac semimetal," Physical Review Letters, Vol. 124, No. 4, 046803, 2020.
doi:10.1103/PhysRevLett.124.046803

8. Chiarello, G., J. Hofmann, Z. Li, V. Fabio, L. Guo, X. Chen, S. Das Sarma, and A. Politano, "Tunable surface plasmons in Weyl semimetals TaAs and NbAs," Physical Review B, Vol. 99, No. 12, 121401, 2019.
doi:10.1103/PhysRevB.99.121401

9. Politano, A., G. Chiarello, B. Ghosh, K. Sadhukhan, C.-N. Kuo, C. S. Lue, V. Pellegrini, and A. Agarwal, "3D dirac plasmons in the Type-II dirac semimetal PtTe 2," Physical Review Letters, Vol. 121, No. 8, 086804, 2018.
doi:10.1103/PhysRevLett.121.086804

10. Agarwal, A., M. S. Vitiello, L. Viti, A. Cupolillo, and A. Politano, "Plasmonics with two-dimensional semiconductors: From basic research to technological applications," Nanoscale, Vol. 10, No. 19, 8938-8946, 2018.
doi:10.1039/C8NR01395K

11. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, No. 19, 10927-10940, 2014.
doi:10.1039/C4NR03143A

12. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Letters, Vol. 16, No. 1, 80-87, 2016.
doi:10.1021/acs.nanolett.5b02901

13. Politano, A., L. Viti, and M. S. Vitiello, "Optoelectronic devices, plasmonics, and photonics with topological insulators," APL Materials, Vol. 5, No. 3, 035504, 2017.
doi:10.1063/1.4977782

14. Mitrofanov, O., L. Viti, E. Dardanis, M. C. Giordano, D. Ercolani, A. Politano, L. Sorba, and M. S. Vitiello, "Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging," Scientific Reports, Vol. 7, No. 1, 1-10, 2017.
doi:10.1038/s41598-016-0028-x

15. Zhang, L., Z. Chen, K. Zhang, L. Wang, H. Xu, L. Han, W. Guo, Y. Yang, C.-N. Kuo, C. S. Lue, D. Mondal, J. Fuji, I. Vobornik, B. Ghosh, A. Agarwal, H. Xing, X. Chen, X. Chen, and W. Lu, "High-frequency rectifiers based on Type-II dirac fermions," Nature Communications, Vol. 12, No. 1, 1-8, 2021.
doi:10.1038/s41467-020-20314-w

16. Guo, C., Y. Hu, G. Chen, D. Wei, L. Zhang, Z. Chen, W. Guo, H. Xu, C.-N. Kuo, C. S. Lue, X. Bo, X. Wan, L. Wang, X. Chen, X. Chen, and W. Lu, "Anisotropic ultrasensitive PdTe2-based phototransistor for room-temperature long-wavelength detection," Science Advances, Vol. 6, No. 36, 2020.
doi:10.1126/sciadv.abb6500

17. Xu, H., C. Guo, J. Zhang, W. Guo, C.-N. Kuo, C. S. Lue, W. Hu, L. Wang, G. Chen, A. Politano, X. Chen, and W. Lu, "PtTe2-based Type-II dirac semimetal and its Van der Waals heterostructure for sensitive room temperature terahertz photodetection," Small, Vol. 15, No. 52, 1903362, 2019.
doi:10.1002/smll.201903362

18. Tang, W., A. Politano, C. Guo, W. Guo, C. Liu, L. Wang, X. Chen, and W. Lu, "Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator," Advanced Functional Materials, Vol. 28, No. 31, 1801786, 2018.
doi:10.1002/adfm.201801786

19. Chen, Y., A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, N. I. Zheludev, and E. Huq, "Electron beam lithography for high density meta fish scale operational at optical frequency," Microelectronic Engineering, Vol. 86, No. 4-6, 1081-1084, 2009.
doi:10.1016/j.mee.2008.11.094

20. Fedotov, V. A., M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, "Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry," Physical Review Letters PRL, Vol. 99, 147401, 2007.
doi:10.1103/PhysRevLett.99.147401

21. Alibakhshikenari, M., B. S. Virdee, P. Shukla, C. H. See, R. A. Abd-Alhameed, F. J. Falcone, and E. Limiti, "Meta-surface wall suppression of mutual coupling between microstrip patch antenna arrays for THz-band applications," Progress In Electromagnetics Research Letters, Vol. 75, 105-111, 2018.
doi:10.2528/PIERL18021908

22. Wang, S., P. C.Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, and T. Li, "Broadband achromatic optical metasurface devices," Nature Communications, Vol. 8, No. 1, 1-9, 2017.
doi:10.1038/s41467-016-0009-6

23. Prosvirnin, S. L., V. A. Dmitriev, Y. A. Kuleshov, and V. V. Khardikov, "Planar all-silicon metamaterial for terahertz applications," Applied Optics, Vol. 54, No. 13, 3986-3990, 2015.
doi:10.1364/AO.54.003986

24. Tuz, V. R., V. V. Khardikov, A. S. Kupriianov, K. L. Domina, S. Xu, H. Wang, and H.-B. Sun, "High-quality trapped modes in all-dielectric metamaterials," Optics Express, Vol. 26, No. 3, 2905-2916, 2018.
doi:10.1364/OE.26.002905

25. Legenkiy, M., "Analysis of axially symmetric diffraction grating," Proceedings XI International Conference on Antenna Theory and Techniques (ICATT), Kyiv, Ukraine, May 24-27, 2017.

26. Wang, Y., B. Yang, Y. Tian, R. S. Donnan, and M. J. Lancaster, "Micromachined thick mesh filters for millimeter-wave and terahertz applications," IEEE Trans. Terahertz Science and Technology, Vol. 4, No. 2, 247-253, 2014.
doi:10.1109/TTHZ.2013.2296564

27. Antonenko, Y. V. and A. V. Gribovsky, "Frequency-selective properties of a plane screen of finite thickness with coaxial-sector apertures," Radio Physics and Radio Astronomy, Vol. 2, No. 1, 77-83, 2011.
doi:10.1615/RadioPhysicsRadioAstronomy.v2.i1.80

28. Antonenko, J. V. and A. V. Gribovsky, "Polarization transformation of electromagnetic waves on a reflector array of the short-circuited coaxial-sector waveguides," Proceedings 13-th International Conference on Mathematical Methods in Electromagnetic Theory, Kyiv, Ukraine, September 6-8, 2010.

29. Antonenko, J. V. and A. V. Gribovsky, "Frequency-selective properties of the flat screen of a finite thickness with coaxial-sectors apertures," Proceedings International Kharkov Simposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, Kharkiv, Ukraine, June 21-26, 2010.

30. Cui, J., M. Legenkiy, V. Khrychov, S. Shulga, Z. Sun, and Y. Zheng, "Diffraction properties of azimuthally symmetric gratings in a hollow circular dielectric waveguide," Results in Physics, Vol. 18, 103204, 2020.
doi:10.1016/j.rinp.2020.103204

31. Antonenko, Y. V., Ye. A. Antonenko, and A. V. Gribovsky, "Experimental studies of the Fabry-Perot resonator with mirrors perforated by coaxial-sector holes," Proceedings XXIVth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), Lviv, Ukraine, September 12-14, 2019, 2019.