Vol. 108
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-02-04
A Parametric Analysis of Modified Complementary Split Ring Resonator Low-Pass Notch Filter Suitable for the Coexistence of 5.8 GHz DSRC and 5.9 GHz ITS Applications
By
Progress In Electromagnetics Research M, Vol. 108, 17-26, 2022
Abstract
We present a parametric analysis for a compact notch filter based on meta-material elements, suitable for the mitigation of interferences occurring at 5.9 GHz and impacting a 5.8 GHz DSRC receiver. The filter adopts a defected ground plane structure, which is derived by the class of complementary split ring resonator (CSRR) structures and further developed to improve the selectivity. The designed filter preserves the 5.8 GHz DSRC signal and attenuates the 5.9 GHz ITS-G5 signal of more than 20 dB, thus suited to improve dynamic range of DSRC vehicular receivers. This work introduces the new filter structure characteristics, its design principles, and the corresponding experimental validation.
Citation
Alessandro Cidronali, Giovanni Collodi, Stefano Maddio, Lorenzo Pagnini, Marco Passafiume, and Giuseppe Pelosi, "A Parametric Analysis of Modified Complementary Split Ring Resonator Low-Pass Notch Filter Suitable for the Coexistence of 5.8 GHz DSRC and 5.9 GHz ITS Applications," Progress In Electromagnetics Research M, Vol. 108, 17-26, 2022.
doi:10.2528/PIERM21121304
References

1. Aigner, R., C. MacKenzie, and A. Zajac, "Advanced RF filters for V2V and other automotive applications,", 2016 [Online], Qorvo Inc White Paper, url: https://www.qorvo.com/resources/d/advanced-rf-filters-for-v2v-and-automotive-white-paper.
doi:10.1109/MMM.2016.2600949

2. Cidronali, A., S. Maddio, M. Passafiume, and G. Manes, "Car talk: Technologies for vehicle-to-roadside communications," IEEE Microwave Magazine, Vol. 17, No. 11, 40-60, 2016.
doi:10.1109/TMTT.2014.2387841

3. Maddio, S., A. Cidronali, and G. Manes, "Real-time adaptive transmitter leakage cancelling in 5.8 GHz full-duplex transceivers," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 2, 509-519, 2015.
doi:10.2528/PIERL18111302

4. Liu, J., W. Ding, J. Chen, and A. Zhang, "New ultra-wideband filter with sharp notched band using defected ground structure," Progress In Electromagnetics Research Letters, Vol. 83, 99-105, 2019.
doi:10.2528/PIERC13031505

5. Ghazali, A. N. and S. Pal, "UWB-BPF with application based triple notches and suppressed stopband," Progress In Electromagnetics Research C, Vol. 39, 149-163, 2013.
doi:10.2528/PIERL21091301

6. Soundarya, G. and N. Gunavathi, "Compact dual-band SIW bandpass filter using CSRR and DGS structure resonators," Progress In Electromagnetics Research Letters, Vol. 101, 79-87, 2021.
doi:10.1109/TMTT.2005.845211

7. Baena, J. D., J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, et al. "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, 2005.

8. Breed, G., "An introduction to defected ground structures in microstrip circuits," High Frequency Electronics, Vol. 7, No. 11, 50-54, 2008.
doi:10.1109/LAWP.2006.880691

9. Guha, D., S. Biswas, M. Biswas, J. Y. Siddiqui, and Y. M. Antar, "Concentric ring-shaped defected ground structures for microstrip applications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 402-405, 2006.
doi:10.1109/TMTT.2005.861664

10. Bonache, J., I. Gil, J. Garcia-Garcia, and F. Martin, "Novel microstrip bandpass filters based on complementary split-ring resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 265-271, 2006.
doi:10.2528/PIERL19110502

11. Hu, S., Y. Gao, X. Zhang, and B. Zhou, "Design of a compact 5.7-5.9 GHz filter based on CRLH resonator units," Progress In Electromagnetics Research Letters, Vol. 89, 141-149, 2020.
doi:10.2528/PIERC15041904

12. Sassi, I., L. Talbi, and K. Hettak, "Compact multi-band filter based on multi-ring complementary split ring resonators," Progress In Electromagnetics Research C, Vol. 57, 127-135, 2015.
doi:10.2528/PIERM19021303

13. Mousavi, O., A. R. Eskandari, M. M. R. Kashani, and M. A. Shameli, "Compact UWB bandpass filter with two notched bands using SISLR and DMS structure," Progress In Electromagnetics Research M, Vol. 80, 193-201, 2019.
doi:10.2528/PIERL11120206

14. Shen, Y. Z. and C. L. Law, "5.8-GHz suppressed UWB bandpass filter EM-ploying modified CRLH-TL of two and three unit cell," Progress In Electromagnetics Research Letters, Vol. 29, 107-113, 2012.