Vol. 110

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-04-18

Design of the Outer-Rotor Coreless Bearingless Permanent Magnet Synchronous Generator Based on an Improved MOPSO Algorithm

By Junqi Huan and Huangqiu Zhu
Progress In Electromagnetics Research M, Vol. 110, 11-24, 2022
doi:10.2528/PIERM22022202

Abstract

The study of outer-rotor coreless bearingless permanent magnet synchronous generator (ORC-BPMSG) is intended to pave the way for the future of high-speed flywheel energy storage systems. A multi-objective parameter optimization method is proposed for the outer-rotor coreless bearingless permanent magnet synchronous generator with the aim of improving the fundamental wave content of the generator's output voltage, reducing harmonics and optimizing the suspension force at the same time. Firstly, the basic parameters and operating principle of the generator are described. Then, the response surface (RS) method is used to obtain the objective functions for the total harmonics distortion (THD), the mean value of the suspension force and the suspension force pulsation. The optimal optimizations of the ORC-BPMSG are selected by establishing the pareto solution set through the improved multi-objective particle swarm optimization (MOPSO) algorithm. Finally, the optimal ORC-BPMSG prototype is fabricated, and the performance of the prototype is verified. The experiments show that the optimized generator output voltage has fewer harmonics and operates reliably.

Citation


Junqi Huan and Huangqiu Zhu, "Design of the Outer-Rotor Coreless Bearingless Permanent Magnet Synchronous Generator Based on an Improved MOPSO Algorithm," Progress In Electromagnetics Research M, Vol. 110, 11-24, 2022.
doi:10.2528/PIERM22022202
http://www.jpier.org/PIERM/pier.php?paper=22022202

References


    1. Abdeltawab, H. H. and Y. A. I. Mohamed, "Robust energy management of a hybrid wind and flywheel energy storage system considering flywheel power losses minimization and grid-code constraints," IEEE Trans. Ind. Electron., Vol. 63, No. 7, 4242-4254, Jul. 2016.
    doi:10.1109/TIE.2016.2532280

    2. Zhang, W., H. Yang, L. Cheng, and H. Zhu, "Modeling based on exact segmentation of magnetic field for a centripetal force type-magnetic bearing," IEEE Trans. Ind. Electron., Vol. 67, No. 9, 7691-7701, Sept. 2020.

    3. Zhang, W., L. Cheng, and H. Zhu, "Suspension force error source analysis and multidimensional dynamic model for a centripetal force type-magnetic bearing," IEEE Trans. Ind. Electron, Vol. 67, No. 9, 7617-7628, Sept. 2020.
    doi:10.1109/TIE.2019.2946568

    4. Zhao, C. and H. Zhu, "Design and analysis of a novel bearingless flux-switching permanent magnet motor," IEEE Trans. Ind. Electron., Vol. 64, No. 8, 6127-6136, Aug. 2017.
    doi:10.1109/TIE.2017.2682018

    5. Zhu, H. and Y. Xu, "Permanent magnet parameter design and performance analysis of bearingless flux switching permanent magnet motor," IEEE Trans. Ind. Electron., Vol. 68, No. 5, 4153-4163, May 2021.
    doi:10.1109/TIE.2020.2984434

    6. Sun, X., L. Chen, and Z. Yang, "Overview of bearingless permanent-magnet synchronous motors," IEEE Trans. Ind. Electron., Vol. 60, No. 12, 5528-5538, Dec. 2013.
    doi:10.1109/TIE.2012.2232253

    7. Zhu, H. and Z. Gu, "Active disturbance rejection control of 5-degree-of-freedom bearingless permanent magnet synchronous motor based on fuzzy neural network inverse system," ISA Transactions, Vol. 101, 295-308, Jan. 2020.
    doi:10.1016/j.isatra.2020.01.028

    8. Steinert, D., I. Kovacevic-Badstübner, T. Nussbaumer, and J. W. Kolar, "Loss investigation of slotless bearingless disk drives," Proc. IEEE Energy. Convers. Congr. Expo. (ECCE), 4418-4424, Sep. 2015.

    9. Fu, Y., M. Takemoto, S. Ogasawara, and K. Orikawa, "Investigation of a high speed and high power density bearingless motor with neodymium bonded magnet," Proc. IEEE Int. Electr. Mach. Driv. Conf. (IEMDC), 1-8, May 2017.

    10. Sun, Y., B. Su, and X. Sun, "Optimal design and performance analysis for interior composite-rotor bearingless permanent magnet synchronous motors," IEEE Access, Vol. 7, 7456-7465, Jan. 2019.
    doi:10.1109/ACCESS.2018.2890020

    11. Ooshima, M., S. Kitazawa, A. Chiba, and T. Fukao, "Design and analyses of a coreless-stator-type bearingless motor/generator for clean energy generation and storage systems," IEEE Trans. Magn., Vol. 42, No. 10, 3461-3463, Oct. 2006.
    doi:10.1109/TMAG.2006.879071

    12. Ooshima, M., S. Kobayashi, and H. Tanaka, "Magnetic suspension performance of a bearingless motor/generator for flyweel energy storage systems," IEEE PES Gen. Meet., 1-4, Jul. 2010.

    13. He, C. and T. Wu, "Analysis and design of surface permanent magnet synchronous motor and generator," CES Trans. Electr. Mach. Syst., Vol. 3, No. 1, 94-100, Mar. 2019.
    doi:10.30941/CESTEMS.2019.00013

    14. Liu, B., R. Badcock, H. Shu, L. Tan, and J. Fang, "Electromagnetic characteristic analysis and optimization design of a novel HTS coreless induction motor for high-speed operation," IEEE Trans. Appl. Supercond., Vol. 28, No. 4, 1-5, Jun. 2018.

    15. Stamenkovic, I., N. Milivojevic, N. Schofield, M. Krishnamurthy, and A. Emadi, "Design, analysis, and optimization of ironless stator permanent magnet machines," IEEE Trans. Power Electron, Vol. 28, No. 5, 2527-2538, May 2013.
    doi:10.1109/TPEL.2012.2216901

    16. Liu, K., M. Yin, W. Hua, Z. Ma, M. Lin, and Y. Kong, "Design and optimization of an external rotor ironless BLDCM used in a flywheel energy storage system," IEEE Trans. Magn., Vol. 54, No. 11, 1-5, Nov. 2018.

    17. Kim, K. and B. Lee, "Taguchi robust design for the multi-response considering the manufacturing tolerance used in high-speed air blower motor," IET Electr. Power Appl., Vol. 14, No. 7, 1141-1147, Feb. 2020.
    doi:10.1049/iet-epa.2019.0600

    18. Guo, Y., J. Si, C. Gao, H. Feng, and C. Gan, "Improved fuzzy-based Taguchi method for multi-objective optimization of direct-drive permanent magnet synchronous motors," IEEE Trans. Magn., Vol. 55, No. 6, 1-4, Jun. 2019.
    doi:10.1109/TMAG.2019.2897867

    19. Hwang, C., C. Chang, and C. Liu, "A fuzzy-based Taguchi method for multiobjective design of PM motors," IEEE Trans. Magn., Vol. 49, No. 5, 2153-2156, May 2013.
    doi:10.1109/TMAG.2013.2242854

    20. Zhu, H., S. Shen, and X. Wang, "Multi-objective optimization design of outer rotor coreless bearingless permanent magnet synchronous motor," IEEE J. Emerg. Sel. Topic Circuits Syst., Apr. 2021.

    21. Zhang, J., H. Wang, L. Chen, C. Tan, and Y. Wang, "Multi-objective optimal design of bearingless switched reluctance motor based on multi-objective genetic particle swarm optimizer," IEEE Trans. Magn., Vol. 54, No. 1, 1-13, Jan. 2018.
    doi:10.1109/TMAG.2017.2751546