Vol. 110
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-04-18
Design of the Outer-Rotor Coreless Bearingless Permanent Magnet Synchronous Generator Based on an Improved MOPSO Algorithm
By
Progress In Electromagnetics Research M, Vol. 110, 11-24, 2022
Abstract
The study of outer-rotor coreless bearingless permanent magnet synchronous generator (ORC-BPMSG) is intended to pave the way for the future of high-speed flywheel energy storage systems. A multi-objective parameter optimization method is proposed for the outer-rotor coreless bearingless permanent magnet synchronous generator with the aim of improving the fundamental wave content of the generator's output voltage, reducing harmonics and optimizing the suspension force at the same time. Firstly, the basic parameters and operating principle of the generator are described. Then, the response surface (RS) method is used to obtain the objective functions for the total harmonics distortion (THD), the mean value of the suspension force and the suspension force pulsation. The optimal optimizations of the ORC-BPMSG are selected by establishing the pareto solution set through the improved multi-objective particle swarm optimization (MOPSO) algorithm. Finally, the optimal ORC-BPMSG prototype is fabricated, and the performance of the prototype is verified. The experiments show that the optimized generator output voltage has fewer harmonics and operates reliably.
Citation
Junqi Huan, and Huangqiu Zhu, "Design of the Outer-Rotor Coreless Bearingless Permanent Magnet Synchronous Generator Based on an Improved MOPSO Algorithm," Progress In Electromagnetics Research M, Vol. 110, 11-24, 2022.
doi:10.2528/PIERM22022202
References

1. Abdeltawab, H. H. and Y. A. I. Mohamed, "Robust energy management of a hybrid wind and flywheel energy storage system considering flywheel power losses minimization and grid-code constraints," IEEE Trans. Ind. Electron., Vol. 63, No. 7, 4242-4254, Jul. 2016.
doi:10.1109/TIE.2016.2532280

2. Zhang, W., H. Yang, L. Cheng, and H. Zhu, "Modeling based on exact segmentation of magnetic field for a centripetal force type-magnetic bearing," IEEE Trans. Ind. Electron., Vol. 67, No. 9, 7691-7701, Sept. 2020.

3. Zhang, W., L. Cheng, and H. Zhu, "Suspension force error source analysis and multidimensional dynamic model for a centripetal force type-magnetic bearing," IEEE Trans. Ind. Electron, Vol. 67, No. 9, 7617-7628, Sept. 2020.
doi:10.1109/TIE.2019.2946568

4. Zhao, C. and H. Zhu, "Design and analysis of a novel bearingless flux-switching permanent magnet motor," IEEE Trans. Ind. Electron., Vol. 64, No. 8, 6127-6136, Aug. 2017.
doi:10.1109/TIE.2017.2682018

5. Zhu, H. and Y. Xu, "Permanent magnet parameter design and performance analysis of bearingless flux switching permanent magnet motor," IEEE Trans. Ind. Electron., Vol. 68, No. 5, 4153-4163, May 2021.
doi:10.1109/TIE.2020.2984434

6. Sun, X., L. Chen, and Z. Yang, "Overview of bearingless permanent-magnet synchronous motors," IEEE Trans. Ind. Electron., Vol. 60, No. 12, 5528-5538, Dec. 2013.
doi:10.1109/TIE.2012.2232253

7. Zhu, H. and Z. Gu, "Active disturbance rejection control of 5-degree-of-freedom bearingless permanent magnet synchronous motor based on fuzzy neural network inverse system," ISA Transactions, Vol. 101, 295-308, Jan. 2020.
doi:10.1016/j.isatra.2020.01.028

8. Steinert, D., I. Kovacevic-Badstübner, T. Nussbaumer, and J. W. Kolar, "Loss investigation of slotless bearingless disk drives," Proc. IEEE Energy. Convers. Congr. Expo. (ECCE), 4418-4424, Sep. 2015.

9. Fu, Y., M. Takemoto, S. Ogasawara, and K. Orikawa, "Investigation of a high speed and high power density bearingless motor with neodymium bonded magnet," Proc. IEEE Int. Electr. Mach. Driv. Conf. (IEMDC), 1-8, May 2017.

10. Sun, Y., B. Su, and X. Sun, "Optimal design and performance analysis for interior composite-rotor bearingless permanent magnet synchronous motors," IEEE Access, Vol. 7, 7456-7465, Jan. 2019.
doi:10.1109/ACCESS.2018.2890020

11. Ooshima, M., S. Kitazawa, A. Chiba, and T. Fukao, "Design and analyses of a coreless-stator-type bearingless motor/generator for clean energy generation and storage systems," IEEE Trans. Magn., Vol. 42, No. 10, 3461-3463, Oct. 2006.
doi:10.1109/TMAG.2006.879071

12. Ooshima, M., S. Kobayashi, and H. Tanaka, "Magnetic suspension performance of a bearingless motor/generator for flyweel energy storage systems," IEEE PES Gen. Meet., 1-4, Jul. 2010.

13. He, C. and T. Wu, "Analysis and design of surface permanent magnet synchronous motor and generator," CES Trans. Electr. Mach. Syst., Vol. 3, No. 1, 94-100, Mar. 2019.
doi:10.30941/CESTEMS.2019.00013

14. Liu, B., R. Badcock, H. Shu, L. Tan, and J. Fang, "Electromagnetic characteristic analysis and optimization design of a novel HTS coreless induction motor for high-speed operation," IEEE Trans. Appl. Supercond., Vol. 28, No. 4, 1-5, Jun. 2018.

15. Stamenkovic, I., N. Milivojevic, N. Schofield, M. Krishnamurthy, and A. Emadi, "Design, analysis, and optimization of ironless stator permanent magnet machines," IEEE Trans. Power Electron, Vol. 28, No. 5, 2527-2538, May 2013.
doi:10.1109/TPEL.2012.2216901

16. Liu, K., M. Yin, W. Hua, Z. Ma, M. Lin, and Y. Kong, "Design and optimization of an external rotor ironless BLDCM used in a flywheel energy storage system," IEEE Trans. Magn., Vol. 54, No. 11, 1-5, Nov. 2018.

17. Kim, K. and B. Lee, "Taguchi robust design for the multi-response considering the manufacturing tolerance used in high-speed air blower motor," IET Electr. Power Appl., Vol. 14, No. 7, 1141-1147, Feb. 2020.
doi:10.1049/iet-epa.2019.0600

18. Guo, Y., J. Si, C. Gao, H. Feng, and C. Gan, "Improved fuzzy-based Taguchi method for multi-objective optimization of direct-drive permanent magnet synchronous motors," IEEE Trans. Magn., Vol. 55, No. 6, 1-4, Jun. 2019.
doi:10.1109/TMAG.2019.2897867

19. Hwang, C., C. Chang, and C. Liu, "A fuzzy-based Taguchi method for multiobjective design of PM motors," IEEE Trans. Magn., Vol. 49, No. 5, 2153-2156, May 2013.
doi:10.1109/TMAG.2013.2242854

20. Zhu, H., S. Shen, and X. Wang, "Multi-objective optimization design of outer rotor coreless bearingless permanent magnet synchronous motor," IEEE J. Emerg. Sel. Topic Circuits Syst., Apr. 2021.

21. Zhang, J., H. Wang, L. Chen, C. Tan, and Y. Wang, "Multi-objective optimal design of bearingless switched reluctance motor based on multi-objective genetic particle swarm optimizer," IEEE Trans. Magn., Vol. 54, No. 1, 1-13, Jan. 2018.
doi:10.1109/TMAG.2017.2751546