Vol. 110

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-04-29

Analysis of a Three-Coil Wireless Power Transfer System Operated Under Hybrid Resonant Frequency

By Zhenyang Zhang and Meng Wang
Progress In Electromagnetics Research M, Vol. 110, 73-82, 2022
doi:10.2528/PIERM22031801

Abstract

To enhance transmission performance, a novel three-coil wireless power transfer system is proposed in this work. Unlike the traditional system in which three coils are resonant, the coils in the proposed system are hybrid resonant. According to theoretical calculation, it is found that output power is dependent on resonant frequency of the transmitting coil and the relay coil once the receiving coil is set to resonate at the operating frequency. Simulation work is conducted. Under various distance between transmitting coil and relay coil, resonant frequency of the two coils at which the output power is maximized is obtained. Compared with the traditional resonant system, the simulation result shows that output power of the proposed hybrid resonant system is higher especially at smaller distance. For further validation, experiments have been carried out which verify that better performance can be realized with the proposed hybrid resonant system.

Citation


Zhenyang Zhang and Meng Wang, "Analysis of a Three-Coil Wireless Power Transfer System Operated Under Hybrid Resonant Frequency," Progress In Electromagnetics Research M, Vol. 110, 73-82, 2022.
doi:10.2528/PIERM22031801
http://www.jpier.org/PIERM/pier.php?paper=22031801

References


    1. Wang, M., L. Ren, W. Liu, Y. Shi, and Y. Niu, "Analysis and design of an efficient distance less-sensitive wireless power transfer system," Progress In Electromagnetics Research C, Vol. 106, 199-213, 2020.
    doi:10.2528/PIERC20091102

    2. Wang, M., C. Zhou, M. H. Shen, and Y. Y. Shi, "Frequency drift insensitive broadband wireless power transfer system," AEU - Int. J. Electron. Commun., Vol. 117, 153121, 2020.
    doi:10.1016/j.aeue.2020.153121

    3. Shi, Y. Y., Y. Fan, Y. Li, L. Yang, and M. Wang, "An efficient broadband slotted rectenna for wireless power transfer at LTE band," IEEE Trans. Antennas Propag., Vol. 67, No. 2, 814-822, 2019.
    doi:10.1109/TAP.2018.2882632

    4. Kim, J. G., G. Wei, M. H. Kim, J. Y. Jong, and C. Zhu, "A comprehensive study on composite resonant circuit-based wireless power transfer systems," IEEE Trans. Ind. Electron., Vol. 65, No. 6, 4670-4680, 2018.
    doi:10.1109/TIE.2017.2772207

    5. Trivino-Cabrera, A. and J. A. A. Sanchez, "A review on the fundamentals and practical implementation details of strongly coupled magnetic resonant technology for wireless power transfer," Energies, Vol. 11, No. 10, 2844, 2018.
    doi:10.3390/en11102844

    6. Liu, H., X. Huang, and L. Tan, "Switching control optimisation strategy of segmented transmitting coils for on-road charging of electrical vehicles," IET Power Electron., Vol. 9, No. 11, 2282-2288, 2016.
    doi:10.1049/iet-pel.2015.0778

    7. Mohamed, A. A. S., A. Berzoy, and O. A. Mohammed, "Experimental validation of comprehensive steady-state analytical model of bidirectional WPT system in EVs applications," IEEE Trans. Veh. Technol., Vol. 66, No. 7, 5584-5594, 2017.
    doi:10.1109/TVT.2016.2634159

    8. Huang, C. C., C. L. Lin, and Y. K. Wu, "Simultaneous wireless power/data transfer for electric vehicle charging," IEEE Trans. Ind. Electron., Vol. 64, No. 1, 682-690, 2017.
    doi:10.1109/TIE.2016.2608765

    9. Liu, M., M. Fu, Y. Wang, and C. Ma, "Battery cell equalization via megahertz multiple-receiver wireless power transfer," IEEE Trans. Power Electron., Vol. 33, No. 5, 4135-4144, 2018.
    doi:10.1109/TPEL.2017.2713407

    10. Roshan, Y. M. and E. J. Park, "Design approach for a wireless power transfer system for wristband wearable devices," IET Power Electron., Vol. 10, No. 8, 931-937, 2017.
    doi:10.1049/iet-pel.2016.0616

    11. Wang, S. M., Z. Y. Hu, C. C. Rong, C. H. Lu, X. Tao, J. F. Chen, and M. H. Liu, "Optimisation analysis of coil configuration and circuit model for asymmetric wireless power transfer system," IET Microw. Antennas Propag., Vol. 12, No. 7, 1132-1139, 2018.
    doi:10.1049/iet-map.2017.0539

    12. Ahn, D. and M. Ghovanloo, "Optimal design of wireless power transmission links for millimeter-sized biomedical implants," IEEE Trans. Biomed. Circuits Syst., Vol. 10, No. 1, 125-137, 2016.
    doi:10.1109/TBCAS.2014.2370794

    13. Ibtahim, A. and M. Kiani, "A figure-of-merit for design and optimization of inductive power transmission links for millimeter-sized biomedical implants," IEEE Trans. Biomed. Circuits Syst., Vol. 10, No. 6, 1100-1111, 2016.
    doi:10.1109/TBCAS.2016.2515541

    14. Na, K., H. Jang, H. Ma, and F. Bien, "Tracking optimal efficiency of magnetic resonance wireless power transfer system for biomedical capsule endoscopy," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 1, 295-304, 2015.
    doi:10.1109/TMTT.2014.2365475

    15. Liu, H., Q. Shao, and X. L. Fang, "Modeling and optimization of class-E amplifier at subnominal condition in a wireless power transfer system for biomedical implants," IEEE Trans. Biomed. Circuits Syst., Vol. 11, No. 1, 35-43, 2017.
    doi:10.1109/TBCAS.2016.2538320

    16. Wang, M., J. Feng, Y. Y. Shi, and M. H. Shen, "Demagnetization weakening and magnetic field concentration with ferrite core characterization for efficient wireless power transfer," IEEE Trans. Ind. Electron., Vol. 66, No. 3, 1842-1851, 2019.

    17. Shi, Y. Y., Y. M. Zhang, M. H. Shen, Y. Fan, C. Wang, and M. Wang, "Design of a novel receiving structure for wireless power transfer with the enhancement of magnetic coupling," AEU - Int. J. Electron. C, Vol. 95, 236-241, 2018.
    doi:10.1016/j.aeue.2018.08.033

    18. Barakat, A., K. Yoshitomi, and R. K. Pokharel, "Design approach for efficient wireless power transfer systems during lateral misalignment," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 9, 4170-4177, 2018.
    doi:10.1109/TMTT.2018.2852661

    19. Tran, D. H., V. B. Vu, and W. Choi, "Design of a high-efficiency wireless power transfer system with intermediate coils for the on-board chargers of electric vehicle," IEEE Trans. Power Electron., Vol. 33, No. 1, 175-187, 2018.
    doi:10.1109/TPEL.2017.2662067

    20. Zhong, W. X. and S. Y. R. Hui, "Maximum energy efficiency tracking for wireless power transfer systems," IEEE Trans. Power Electron., Vol. 30, No. 7, 4025-4034, 2015.
    doi:10.1109/TPEL.2014.2351496

    21. Zhong, W. X., C. Zhang, X. Liu, and S. Y. R. Hui, "A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance," IEEE Trans. Power Electron., Vol. 30, No. 2, 933-942, 2015.
    doi:10.1109/TPEL.2014.2312020

    22. Zhang, J., X. M. Yuan, C. Wang, and Y. He, "Comparative analysis of two-coil and three-coil structures for wireless power transfer," IEEE Trans. Power Electron., Vol. 32, No. 1, 341-352, 2017.
    doi:10.1109/TPEL.2016.2526780

    23. Wang, Q. D. and Y. C. Wang, "Power efficiency optimisation of a three-coil wireless power transfer using compensatory reactance," IET Power Electron., Vol. 11, No. 13, 2102-2108, 2018.
    doi:10.1049/iet-pel.2018.5378

    24. Moon, S., B. C. Kim, S. Y. Cho, C. H. Ahn, and G. W. Moon, "Analysis and design of a wireless power transfer system with an intermediate coil for high efficiency," IEEE Trans. Ind. Electron., Vol. 61, No. 11, 5861-5870, 2014.
    doi:10.1109/TIE.2014.2301762

    25. Kung, M. L. and K. H. Lin, "Dual-band coil module with repeaters for diverse wireless power transfer applications," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 1, 632-645, 2018.
    doi:10.1109/TMTT.2017.2711010

    26. Ye, Z. H., Y. Sun, X. Dai, C. S. Tang, Z. H. Wang, and Y. G. Su, "Energy efficiency analysis of U-coil wireless power transfer system," IEEE Trans. Power Electron., Vol. 31, No. 7, 4809-4817, 2016.

    27. Zhang, X., Y. Yuan, and Z. Li, "Study of frequency characteristics for three-coil wireless power transfer system with different positions," Progress In Electromagnetics Research M, Vol. 93, 185-196, 2020.
    doi:10.2528/PIERM20021002

    28. Johari, R., J. V. Krogmeier, and D. J. Love, "Analysis and practical considerations in implementing multiple transmitters for wireless power transfer via coupled magnetic resonance," IEEE Trans. Ind. Electron., Vol. 61, No. 4, 1774-1783, 2014.
    doi:10.1109/TIE.2013.2263780

    29. Liu, D., H. Hu, and S. V. Georgakopoulos, "Misalignment sensitivity of strongly coupled wireless power transfer systems," IEEE Trans. Power Electron., Vol. 32, No. 7, 5509-5519, 2017.
    doi:10.1109/TPEL.2016.2605698