Vol. 111
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-06-21
A Dual-Band Ultra-Wideband Conformal Antenna for WCE
By
Progress In Electromagnetics Research M, Vol. 111, 89-101, 2022
Abstract
In this paper, a dual-band ultra-wideband conformal antenna for Wireless Capsule Endoscopy is proposed. The antenna uses polyimide as a substrate of side wall to achieve conformality, leaving space for other components of the Wireless Capsule Endoscopy. The feeding network of the conformal antenna utilizes the circuit characteristics of Complementary Split-Ring Resonator to achieve dual-band operation at 1.4 GHz and 4.0 GHz. Based on the principle of wideband characteristics of spiral antennas, the conformal antenna radiation structure is improved. A short-pin is loaded at an appropriate position to improve the impedance matching of the antenna and achieve ultra-wideband without changing the resonant points of the antenna. The operating bandwidth of the antenna can reach 30.3% (1.20~1.63 GHz) and 53.3% (3.33~5.75 GHz), respectively. In addition, the antenna is placed in different simulation models to verify the stability of its operation. Minced pork is used to verify effectiveness of the conformal antenna. The measured results show that the proposed antenna is suitable for capsule endoscopy.
Citation
Maohai Ran, Ming Ye, and Bo Yin, "A Dual-Band Ultra-Wideband Conformal Antenna for WCE," Progress In Electromagnetics Research M, Vol. 111, 89-101, 2022.
doi:10.2528/PIERM22040401
References

1. Iddan, G., G. Meron, A. Glukhovsky, et al. "Wireless capsule endoscopy," Nature, Vol. 405, 417-418, 2000.
doi:10.1038/35013140

2. Glukhovsky, A., "Wireless capsule endoscopy," Sensor Review, Vol. 23, No. 2, 128-133, 2003.
doi:10.1108/02602280310468233

3. Malik, N. A., P. Sant, T. Ajmal, and M. Ur-Rehman, "Implantable antennas for bio-medical applications," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 5, No. 1, 84-96, 2021.
doi:10.1109/JERM.2020.3026588

4. Hayat, S., S. A. A. Shah, and H. Yoo, "Miniaturized dual-band circularly polarized implantable antenna for capsule endoscopic system," IEEE Trans. Antennas Propag., Vol. 69, No. 4, 1885-1895, 2021.
doi:10.1109/TAP.2020.3026881

5. Yun, S., K. Kim, and S. Nam, "Outer-wall loop antenna for ultrawideband capsule endoscope system," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1135-1138, 2010.
doi:10.1109/LAWP.2010.2094996

6. Lee, S. H., J. Lee, Y. J. Yoon, et al. "A wideband spiral antenna for ingestible capsule endoscope systems: Experimental results in a human phantom and a pig," IEEE Transactions on Biomedical Engineering, Vol. 58, No. 6, 1734-1741, 2011.
doi:10.1109/TBME.2011.2112659

7. Liu, C., Y. X. Guo, and S. Q. Xiao, "Circularly polarized helical antenna for ISM-band ingestible capsule endoscope systems," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6027-6039, 2014.
doi:10.1109/TAP.2014.2364074

8. Basir, A., M. Zada, Y. Cho, et al. "A dual-circular-polarized endoscopic antenna with wideband characteristics and wireless biotelemetric link characterization," IEEE Trans. Antennas Propag., Vol. 68, No. 10, 6953-6963, 2020.
doi:10.1109/TAP.2020.2998874

9. Cui, W., R. Liu, L. Wang, et al. "Design of wideband implantable antenna for wireless capsule endoscope system," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2706-2710, 2019.
doi:10.1109/LAWP.2019.2949630

10. Li, R., Y. X. Guo, and G. Du, "A conformal circularly polarized antenna for wireless capsule endoscope systems," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 2119-2124, 2018.
doi:10.1109/TAP.2018.2804674

11. Shang, J. L. and Y. Yu, "An ultrawideband capsule antenna for biomedical applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2548-2551, 2019.
doi:10.1109/LAWP.2019.2942842

12. Liu, K., R. P. Liu, W. J. Cui, et al. "Design of conformal spiral dual-band antenna for wireless capsule system," IEEE Access, Vol. 9, 117349-117357, 2021.
doi:10.1109/ACCESS.2021.3106735

13. Wang, M. J., P. Ma, L. L. Cai, et al. "Investigation of localizing precise human abdomen models for wireless capsule endoscopy antenna design," IEEE Trans. Antennas Propag., Vol. 70, No. 2, 1367-1379, 2022.
doi:10.1109/TAP.2021.3111278

14. Das, R. and H. Yoo, "A wideband circularly polarized conformal endoscopic antenna system for high-speed data transfer," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 2816-2826, 2017.
doi:10.1109/TAP.2017.2694700

15. Shah, I. A., M. Zada, and H. Yoo, "Design and analysis of a compact-sized multiband spiral-shaped implantable antenna for scalp implantable and leadless pacemaker systems," IEEE Trans. Antennas Propag., Vol. 67, No. 6, 4230-4234, 2019.
doi:10.1109/TAP.2019.2908252

16. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine and Biology, Vol. 41, No. 11, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001

17. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002

18. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, No. 11, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

19. Yousfi, A., A. Lamkaddem, K. A. Abdalmalak, et al. "A miniaturized triple-band and dual-polarized monopole antenna based on a CSRR perturbed ground plane," IEEE Access, Vol. 9, 164292-164299, 2021.
doi:10.1109/ACCESS.2021.3134497

20. Yin, B., M. Ye, J. H. Cong, and Y. Xu, "A miniaturized dual-band circularly polarized implantable antenna by half-cutting," Progress In Electromagnetics Research M, Vol. 108, 139-149, 2022.
doi:10.2528/PIERM21123003

21. Xia, W., K. Saito, M. Takahashi, and K. Ito, "Performances of an implanted cavity slot antenna embedded in the human arm," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 894-899, 2009.
doi:10.1109/TAP.2009.2014579