Vol. 111
Latest Volume
All Volumes
PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-06-14
A Small Disk-Coupled Circularly Polarized Microstrip Ring Antenna for Microwave Energy Harvesting
By
Progress In Electromagnetics Research M, Vol. 111, 13-25, 2022
Abstract
A small ring antenna working at 2.45 GHz was designed in this paper, a small disk-coupled structure was applied to feed an inner-hole-biased ring patch, contributing to not only improving the impedance characteristics of the antenna but also reducing the size. The simulation results show that the designed patch area is only 70.7% of that of the traditional circular microstrip antenna on the premise of ensuring good bandwidth and gain performance; the -10 dB bandwidth of S11 parameter is 62 MHz; the gain of the maximum direction is 7.11 dB; and the circular polarization of the antenna is also realized. This design has also been compared with several conventional designs, It is proved that the antenna has good comprehensive performance, and the antenna feed structure is simple, easy to process, very conducive to engineering applications. Finally, the feasibility of this technology was verified by contrasting the measured data with the simulation data.
Citation
Cheng Peng, Zhi-Hao Ye, Han Xiao, Jing Huang, Ning-Zhao Luo, and Dong Wu, "A Small Disk-Coupled Circularly Polarized Microstrip Ring Antenna for Microwave Energy Harvesting," Progress In Electromagnetics Research M, Vol. 111, 13-25, 2022.
doi:10.2528/PIERM22042902
References

1. Peng, C., Z.-H. Ye, Y.-H. Xia, and C. Yang, "Analysis on space transmission model of the Microwave Wireless Power Transfer system," Frequenz, Vol. 75, 449-458, 2021.
doi:10.1515/freq-2021-0035

2. Xiao, Y. Y., Z.-X. Du, and X. Y. Zhang, "High-efficiency rectifier with wide input power range based on power recycling," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 65, 744-748, 2018.
doi:10.1109/TCSII.2018.2794551

3. Peng, C., T. Yu, H. Li, and W. Cao, "Research on circularly polarized small disk coupled square ring microstrip antenna for GPS application," 2013 Proceedings of the International Symposium on Antennas & Propagation, Vol. 01, 380-383, Nanjing, China, 2013.

4. Mehrparvar, M. and F. H. Kashani, "Microstrip antenna miniaturization using metamaterial structures," 20th Iranian Conference on Electrical Engineering (ICEE2012), 1243-1246, Tehran, Iran, 2012.
doi:10.1109/IranianCEE.2012.6292546

5. Ding, K., T. Yu, D.-X. Qu, and C. Peng, "A novel loop-like monopole antenna with dual-band circular polarization," Progress In Electromagnetics Research C, Vol. 45, 179-190, 2013.
doi:10.2528/PIERC13102002

6. Ding, K., T. B. Yu, D. F. Guan, and C. Peng, "Stacked tri-band circularly polarized microstrip patch antenna for CNSS applications," Applied Mechanics and Materials, Vol. 347, 1786-1789, 2013.
doi:10.4028/www.scientific.net/AMM.347-350.1786

7. Alaukally, M., T. A. Elwi, and D. C. Atilla, "Miniaturized flexible metamaterial antenna of circularly polarized high gain-bandwidth product for radio frequency energy harvesting," International Journal of Communication Systems, 2021.

8. Wong, K.-L. and J.-Y. Wu, "Single-feed small circular polarized square microstrip antenna," Electronic Letters, Vol. 5, 45-46, 1997.

9. Han, Y. and D. Su, "Design of circularly polarized GPS microstrip antenna with single-feed point," Electronic Measurement Technique, Vol. 11, 50-55, 2006.

10. Yang, L., L. J. Xu, Y. M. Bo, and M. Zhang, "A single-feed dual-band circularly polarized microstrip antenna with spiral slots," 2017 International Applied Computational Electromagnetics Society Symposium (ACES), 1-2, Suzhou, China, 2017.

11. Zhang, J., Microstrip Antenna Theory and Engineering, National Defense Industry Press, Beijing, 1988.

12. Li, H., S. Fang, and W. Ding, "Low cost high gain microstrip antenna design," Proceedings of the National Antenna Annual Conference 2010, 45-50, Beijing, 2010.

13. Carrez, F. and J. Vindevoghel, "Experimental study of an integrated linear array microstrip antenna for monolithic fabrication," Microwave and Optical Technology Letters, Vol. 16, 233-236, 1997.
doi:10.1002/(SICI)1098-2760(199711)16:4<233::AID-MOP11>3.0.CO;2-6

14. Yuwono, R. and R. Syakura, "2.4 GHz circularly polarized microstrip antenna for RFID application," Advanced Computer and Communication Engineering Technology, 37-42, Berlin, Heidelberg, Springer, 2015.

15. Daneshmandian, F., P. Dehkhoda, and A. Tavakoli, "A miniaturized circularly polarized microstrip antenna for GPS applications," 2014 22nd Iranian Conference on Electrical Engineering (ICEE), 1653-1656, 2014.
doi:10.1109/IranianCEE.2014.6999803

16. Elwi, T. A. and A. M. Al-Saegh, "Further realization of a flexible metamaterial-based antenna on indium nickel oxide polymerized palm fiber substrates for RF energy harvesting," International Journal of Microwave and Wireless Technologies, Vol. 13, No. 1, 1-9, 2020.

17. Elwi, T. A., D. A. Jassim, and H. H. Mohammed, "Novel miniaturized folded UWB microstrip antenna-based metamaterial for RF energy harvesting," International Journal of Communication Systems, Vol. 33, No. 6, 2020.
doi:10.1002/dac.4305

18. Elwi, T. A., Z. Hassain, and O. A. Tawfeeq, "Hilbert metamaterial printed antenna based on organic substrates for energy harvesting," IET Microwaves, Antennas & Propagation, Vol. 13, No. 12, 2185-2192, 2019.
doi:10.1049/iet-map.2018.5948

19. Elwi, T. A., "Novel UWB printed metamaterial microstrip antenna based organic substrates for RF- energy harvesting applications," AEU --- International Journal of Electronics and Communications, 2019.

20. Zhong, S., Theory and Application of Microstrip Antenna, Xidian University Press, Xi'an, 1991.

21. Zhang, R., J. Huang, J. Ding, and G. Zhai, "Compact broadband circularly polarized microstrip antenna with a cross-slotted ground plane," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1753-1754, Atlanta, GA, USA, 2019.

22. Almizan, H., T. A. Elwi, and Z. Hassain, "Circularly-polarized, wide-range coverage azimuth and elevation angles microstrip antenna for RF harvesting," Journal of Engineering and Sustainable Development, Vol. 24 (special), 191-198, 2020.
doi:10.31272/jeasd.conf.1.21

23. Almizan, H., T. A. Elwi, and Z. Hassain, "Circularly-polarized, wide-range coverage azimuth and elevation angles microstrip antenna for RF harvesting," Journal of Engineering and Sustainable Development, Vol. 24 (special), 191-198, 2020.
doi:10.31272/jeasd.conf.1.21

24. Meng, F. and S. K. Sharma, "A single feed dual-band (2.4 GHz/5.8 GHz) miniaturized patch antenna for Wireless Local Area Network (WLAN) Communications," 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), 1-4, Beijing, China, 2014.

25. Meng, F. and S. Sharma, "A single feed dual-band (2.4 GHz/5 GHz) miniaturized patch antenna for Wireless Local Area Network (WLAN) communications," Journal of Electromagnetic Waves and Applications, Vol. 30, 2390-2401, 2016.
doi:10.1080/09205071.2016.1251854

26. Chen, H.-R., R.-X. Che, and Y. Shao, "A compact microstrip antenna with 2.4 GHz," Wireless Communication Technology, Vol. 18, 30-32, 2009.

27. Chen, C., "Design of miniaturized 2.4 GHz microstrip patch antenna," Journal of Taiyuan Normal University (Natural Science Edition), Vol. 13, 66-69, 2014.

28. Peng, C., T.-B. Yu, H.-B. Li, and P.-C. Xu, "Design and implementation of a novel single-feed microstrip antenna for GPS applications," Journal of Military Communications Technology, Vol. 32, 77-79, 2011.