Vol. 111
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-19
Design of a Microstrip Sensor Based on a CSRR-Derived Structure for Measuring the Permittivity and Permeability of Materials
By
Progress In Electromagnetics Research M, Vol. 111, 235-246, 2022
Abstract
In this paper, a microstrip sensor based on a complementary split ring resonator (CSRR)-derived structure is proposed to characterize the permittivity and permeability of materials. By loading an etched meandered conductive ring and an interdigital capacitor structure, effective separation of the permittivity sensing area and permeability sensing area is realized, and the field strengths of the corresponding areas are improved. The relationship between the resonant response (resonant frequency and quality factor) of the sensor and the permittivity and permeability of the sample under test (SUT) is discussed, and the theoretical basis for measuring the material properties is given. By analyzing the measured resonant frequency and quality factor, the real and imaginary parts of the permittivity and permeability of the SUT can be determined. The sensor was fabricated on a Rogers 5880 substrate, and four standard dielectric and magnetodielectric (MD) samples were tested. The results show that the measured values of the real and imaginary parts of the permittivity and permeability are in good agreement with the reference data.
Citation
Yun-Rui Wang, and Honggang Hao, "Design of a Microstrip Sensor Based on a CSRR-Derived Structure for Measuring the Permittivity and Permeability of Materials," Progress In Electromagnetics Research M, Vol. 111, 235-246, 2022.
doi:10.2528/PIERM22052501
References

1. Takach, A. A., F. M. Mbango, F. Ndagijimana, M. Al-Husseini, and J. Jomaah, "Two-line technique for dielectric material characterization with application in 3D-printing filament electrical parameters extraction," Progress In Electromagnetics Research M, Vol. 85, 195-207, 2019.
doi:10.2528/PIERM19071702

2. Naik, S., M. Pour, and C. Hill, "Characterization of dielectric properties of non-magnetic materials using superstrate-loaded antennas," Progress In Electromagnetics Research M, Vol. 104, 39-47, 2021.
doi:10.2528/PIERM21071210

3. Benali, L. A., J. Terhzaz, A. Tribak, and A. M. Sanchez, "2D-FDTD method to estimate the complex permittivity of a multilayer dielectric materials at Ku-band frequencies," Progress In Electromagnetics Research M, Vol. 91, 155-164, 2020.
doi:10.2528/PIERM20020102

4. Hao, H., D. Wang, and W. Zhu, "A permittivity measurement method based on back propagation neural network by microwave resonator," Progress In Electromagnetics Research C, Vol. 110, 27-38, 2021.
doi:10.2528/PIERC21010706

5. Karami, M., P. Rezaei, S. Kiani, and R. A. Sadeghzadeh, "Modified planar sensor for measuring dielectric constant of liquid materials," Electronics Letters, Vol. 53, No. 19, 1300-1302, Sept. 2017.
doi:10.1049/el.2017.2481

6. Ansari, M. A. H., A. K. Jha, Z. Akhter, and M. J. Akhtar, "Multi-band RF planar sensor using complementary split ring resonator for testing of dielectric materials," IEEE Sensors J., Vol. 18, 6596-6606, Aug. 16, 2018.

7. Muhammed Shafi, K. T., A. K. Jha, and M. J. Akhtar, "Improved planar resonant RF sensor for retrieval of permittivity and permeability of materials," IEEE Sensors J., Vol. 17, No. 17, 5479-5486, Sept. 2017.
doi:10.1109/JSEN.2017.2724942

8. Muhammed Shafi, K. T., M. A. H. Ansari, A. K. Jha, and M. J. Akhtar, "Design of SRR- based microwave sensor for characterization of magnetodielectric substrates," IEEE Microw. Wirel. Components Lett., Vol. 27, No. 5, 524-526, May 2017.
doi:10.1109/LMWC.2017.2690873

9. Saadat-Safa, M., V. Nayyeri, M. Khanjarian, M. Soleimani, and O. M. Ramahi, "A CSRR-based sensor for full characterization of magneto-dielectric materials," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 2, 806-814, Feb. 2019.
doi:10.1109/TMTT.2018.2882826

10. Gan, H.-Y., et al. "A CSRR-loaded planar sensor for simultaneously measuring permittivity and permeability," IEEE Microw. Wirel. Components Lett., Vol. 30, No. 2, 219-221, Feb. 2022.
doi:10.1109/LMWC.2019.2957657

11. Bonache, J., M. Gil, I. Gil, J. Garcia-Garcia, and F. Martin, "On the electrical characteristics of complementary metamaterial resonators," IEEE Microw. Wirel. Components Lett., Vol. 16, No. 10, 543-545, Sept. 2006.
doi:10.1109/LMWC.2006.882400

12. Gama, A. M. and M. C. Rezende, "Complex permeability and permittivity variation of carbonyl iron rubber in the frequency range of 2 to 18 GHz," J. Aerosp. Technol. Manage., Vol. 2, No. 1, 59-62, Apr. 2010.
doi:10.5028/jatm.2010.02015962

13. Castro, J., C. Morales, T. Weller, et al. "Synthesis and characterization of low-loss Fe3O4-PDMS magneto-dielectric polymer nanocomposit," 15th IEEE Annual Conference on Wireless and Microwave Technology (WAMICON), 1-5, Tampa, FL, USA, 2014.

14. Alahnomi, R. A., Z. Zakaria, E. Ruslan, S. R. Ab Rashid, and A. A. Mohd Bahar, "High-Q sensor based on symmetrical split ring resonator with spurlines for solids material detection," EEE Sensors J., Vol. 17, No. 9, 2766-2775, May 2017.
doi:10.1109/JSEN.2017.2682266